Advertisement

Esmolol attenuates hepatic blood flow responses during sodium nitroprusside-induced hypotension in dogs

  • Shohei Takeda
  • Rikuo Masuda
  • Tatsuo Kanazawa
  • Teruaki Tomaru
General Anesthesia

Abstract

Purpose

The hemodynamic responses secondary to sympathetic suppression by esmolol may alter blood flow to splanchnic organs. We investigated whether esmolol might modify splanchnic organ blood flow responses during sodium nitroprusside (SNP)-induced hypotension in dogs anesthetized with sevoflurane.

Methods

The control group (n = 10) received SNP (SNP group). The ES25 and ES100 groups (n = 10, each) received SNP combined with esmolol infused at a constant rate of 25 and 100 μg·kg−1·min−1 during the hypotensive period after a mean arterial pressure (MAP) of 60 mmHg was attained by the infusion of a 0.03% SNP solution, respectively. The renal, hepatic, and pancreatic blood flows (RBF, HBF, and PBF) were measured by using the hydrogen clearance method.

Results

Cardiac index in the SNP group increased (P < 0.01), but in the ES groups it decreased (P < 0.01). Left ventricular dP/dtmax in the SNP group remained unchanged, but in the ES groups it decreased (P < 0.01, each) during the hypotensive period. Except for HBF in the SNP group, the splanchnic blood flow in all groups decreased (P < 0.01, each). The HBF in the ES groups was lower than that in the SNP group (SNP vs ES25, ES100; 70 ± 1 vs 64 ± 5, 63 ± 3mL·min−1·100g−1).

Conclusions

This study shows that the differences in HBF between SNP-induced hypotension with or without esmolol may be due to the changes in cardiac output caused by alterations of cardiac contractility. These findings suggest that a small dose of esmolol may impair the maintenance of HBF during SNP-induced hypotension.

Keywords

Mean Arterial Pressure Sevoflurane Renal Blood Flow Pulmonary Capillary Wedge Pressure Esmolol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

L’esmolol atténue la réaction du débit sanguin hépatique à l’hypotension induite par le nitroprussiate de sodium chez les chiens

Résumé

Objectif

Les réactions hémodynamiques secondaires à la suppression sympathique par l’esmolol peuvent modifier le débit du sang vers les organes splanchniques. Nous avons vérifié si l’esmolol pouvait modifier la réaction du débit sanguin des organes splanchniques à l’hypotension induite par le nitroprussiate de sodium (NPS) chez des chiens anesthésiés avec du sévoflurane.

Méthode

Le groupe témoin (n = 10) a reçu du NPS (groupe NPS). Les groupes ES25 et ES100 (n = 10, chacun) ont reçu du NPS combiné à une perfusion d’esmolol selon un débit constant de 25 ou 100 μg·kg−1·min−1 pendant l’hypotension suivant la tension artérielle moyenne (TAM) de 60 mmHg obtenue par la perfusion d’une solution de NPS à 0,03 %. Les débits sanguins rénal, hépatique et pancréatique (DSR, DSH et DSP) ont été mesurés par la méthode de clairance à l’hydrogène.

Résultats

L’index cardiaque a augmenté dans le groupe NPS (P < 0,01), mais il a diminué dans le groupe ES (P < 0,01). La dP/dtmax ventriculaire gauche est demeurée inchangée dans le groupe NPS, mais a diminué dans les groupes ES (P < 0,01, chacun) pendant la période d’hypotension. Excepté pour le DSH dans le groupe NPS, le débit sanguin splanchnique a baissé dans tous les groupes (P < 0,01 chacun). Le DSH dans les groupes ES a été plus bas que celui du groupe NPS (NPS vs ES25, ES100; 70 ± 1 vs 64 ± 5, 63 ± 3 mL·min−1·100g−1).

Conclusion.

L’étude montre que les différences de DSH entre l’hypotension induite par le NPS avec ou sans esmolol peuvent relever des changements de débit cardiaque amenés par des modifications de la contractilité cardiaque. Ces résultats suggèrent qu’une faible dose d’esmolol peut nuire au maintien du DSH pendant l’hypotension induite par le NPS.

References

  1. 1.
    Bates J. Induced hypotension how and when. Curr Rev Clin Anesth 1988; 9: 50–5.Google Scholar
  2. 2.
    Friederich JA, Butterworth JF IV. Sodium nitroprusside: twenty years and counting. Anesth Analg 1995; 81: 152–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Bedford RF, Berry FA Jr, Longnecker DE. Impact of propranolol on hemodymanic response and blood cyanide levels during nitroprusside infusion: a prospective study in anesthetized man. Anesth Analg 1979; 58: 466–9.PubMedGoogle Scholar
  4. 4.
    Khambatta HJ, Stone JG, Matteo RS, Khan E. Propranolol premedication blunts stress response to nitroprusside hypotension. Anesth Analg 1984; 63: 125–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Sum CY, Yacobi A, Kartzinel R, Stampfli H, Davis CS, Lai CM. Kinetics of esmolol, an ultra-short-acting beta blocker, and of its major metabolite. Clin Pharmacol Ther 1983; 34: 427–34.PubMedGoogle Scholar
  6. 6.
    Menkhaus PG, Reves JG, Kissin I, et al. Cardiovascular effects of esmolol in anesthetized humans. Anesth Analg 1985; 64: 327–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Murthy VS, Hwang TF, Sandage BW, Laddu AR. Esmolol and the adrenergic response to perioperative stimuli. J Clin Pharmacol 1986; 26(Suppl A): A27–35.PubMedGoogle Scholar
  8. 8.
    Ornstein E, Matteo RS, Weinstein JA, Schwartz AE. A controlled trial of esmolol for the induction of deliberate hypotension. J Clin Anesth 1988; 1: 31–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Boezaart AP, van der Merwe J, Coetzee A. Comparison of sodium nitroprusside- and esmolol-induced controlled hypotension for functional endoscopic sinus surgery. Can J Anaesth 1995; 42: 373–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Pilli G, Güzeldemir ME, Bayhan N. Esmolol for hypotensive anesthesia in middle ear surgery. Acta Anaesth Belg 1996; 47: 85–91.PubMedGoogle Scholar
  11. 11.
    Ornstein E, Young WL, Ostapkovich N, Matteo RS, Diaz J. Deliberate hypotension in patients with intracranial arteriovenous malformations: esmolol compared with isoflurane and sodium nitroprusside. Anesth Analg 1991; 72: 639–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Blau WS, Kafer ER, Anderson JA. Esmolol is more effective than sodium nitroprusside in reducing blood loss during orthognathic surgery. Anesth Analg 1992; 75: 172–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Jordan D, Shulman SM, Miller ED Jr. Esmolol hydrochloride, sodium nitroprusside, and isoflurane differ in their ability to alter peripheral sympathetic responses. Anesth Analg 1993; 77: 281–90.PubMedCrossRefGoogle Scholar
  14. 14.
    Edmondson R, Del Valle O, Shah N, et al. Esmolol for potentiation of nitroprusside-induced hypotension: impact on the cardiovascular, adrenergic, and reninangiotensin systems in man. Anesth Analg 1989; 69: 202–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Takeda S, Tomaru T, Inada Y. The effect of CGRP-induced hypotension on organ blood flow during halothane anesthesia in dogs: a comparison with trimetaphan. J Anesth 1997; 11: 202–7.CrossRefGoogle Scholar
  16. 16.
    Granger DN, Richardson PD, Kvietys PR, Mortillaro NA. Intestinal blood flow. Gastroenterology 1980; 78: 837–63.PubMedGoogle Scholar
  17. 17.
    Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol 1985; 249: G549–56.PubMedGoogle Scholar
  18. 18.
    Lautt WW, Greenway CV. Conceptual review of the hepatic vascular bed. Hepatology 1987; 7: 952–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Doi R, Inoue K, Kogire M, et al. Simultaneous measurement of hepatic arterial and portal venous flows by transit time ultrasonic volume flowmetry. Surg Gynecol Obstet 1988; 167: 65–9.PubMedGoogle Scholar
  20. 20.
    Chauvin M, Bonnet F, Montembault C, Lafay M, Curet P, Viars P. Hepatic plasma flow during sodium nitroprusside-induced hypotension in humans. Anesthesiology 1985; 63: 287–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Suttner SW, Boldt J, Schmidt CC, Piper SN, Schuster P, Kumle B. The effects of sodium nitroprusside-induced hypotension on splanchnic perfusion and hepatocellular integrity. Anesth Analg 1999; 89: 1371–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Waugh WH, Shanks RG. Cause of genuine autoregulation of the renal circulation. Circ Res 1960; 8: 871–88.PubMedGoogle Scholar
  23. 23.
    Bastron RD, Kaloyanides GJ. Effect of sodium nitroprusside on function in the isolated and intact dog kidney. J Pharmacol Exp Ther 1972; 181: 244–9.PubMedGoogle Scholar
  24. 24.
    Pagani M, Vatner SF, Braunwald E. Hemodynamic effects of intravenous sodium nitroprusside in the conscious dog. Circulation 1978; 57: 144–51.PubMedGoogle Scholar
  25. 25.
    McNay JL, Abe Y. Pressure-dependent heterogeneity of renal cortical blood flow in dogs. Circ Res 1970; 27: 571–87.PubMedGoogle Scholar
  26. 26.
    Ebert TJ, Bernstein JS, Stowe DF, Roerig D, Kampine JP. Attenuation of hemodynamic responses to rapid sequence induction and intubation in healthy patients with a single bolus of esmolol. J Clin Anesth 1990; 2: 243–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Thompson JP, West KJ, Hill AJ. The cardiovascular responses to double lumen endobronchial intubation and the effect of esmolol. Anaesthesia 1997; 52: 786–96.CrossRefGoogle Scholar
  28. 28.
    Cryer PE, Rizza RA, Haymond MW, Gerich JE. Epinephrine and norepinephrine are cleared through beta-adrenergic, but not alpha-adrenergic, mechanisms in man. Metabolism 1980; 29: 1114–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Esler M, Jackman G, Leonard P, Skews H, Bobik A, Jennings G. Effect of propranolol on noradrenaline kinetics in patients with essential hypertension. Br J Clin Pharmacol 1981; 12: 375–80.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2004

Authors and Affiliations

  • Shohei Takeda
    • 1
  • Rikuo Masuda
    • 1
  • Tatsuo Kanazawa
    • 1
  • Teruaki Tomaru
    • 1
  1. 1.Department of AnesthesiologyShowa University Fujigaoka HospitalYokohamaJapan

Personalised recommendations