Canadian Journal of Anesthesia

, Volume 49, Issue 10, pp 1070–1075 | Cite as

Fentanyl is more effective than remifentanil at preventing increases in cerebral blood flow velocity during intubation in children

  • Claude Abdallah
  • Cengiz Karsli
  • Bruno Bissonnette
Obstetrical and Pediatric Anesthesia



Controlling the cerebral and systemic hemodynamic responses to laryngoscopy and tracheal intubation may play a role in determining clinical outcome in pediatric neurosurgical patients. This study compared the effects of remifentanil and fentanyl on cerebral blood flow velocity (CBFV) and hemodynamic profile during laryngoscopy and tracheal intubation in children under sevoflurane anesthesia.


Sixty healthy children aged two to six years undergoing dental surgery under general anesthesia were enrolled. Each child was randomly assigned to receive a remifentanil or fentanyl infusion, at a rate of 0.75, 1.0, or 1.5 μg·kg−1·min−1 after induction of anesthesia with 2% sevoflurane. Middle cerebral artery blood flow velocity was measured by transcranial Doppler (TCD) sonography Once a baseline set of hemodynamic variables and TCD measurements were recorded, the opioid infusion was started. Measurements were taken at two-minute intervals, starting four minutes prior to laryngoscopy until four minutes following naso-tracheal intubation.


Remifentanil caused a more significant decrease in mean arterial pressure and CBFV prior to tracheal intubation than did fentanyl (P < 0.001). During laryngoscopy and for two minutes following tracheal intubation, CBFV increased in all remifentanil groups (P < 0.05), whereas it remained stable in all fentanyl groups.


This study suggests that fentanyl was more effective than remifentanil at preventing increases in CBFV during and immediately following laryngoscopy and tracheal intubation in children undergoing sevoflurane anesthesia. Fentanyl also seemed to provide a more stable hemodynamic profile prior to laryngoscopy and tracheal intubation when compared to remifentanil.


Fentanyl Mean Arterial Pressure Sevoflurane Tracheal Intubation Remifentanil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le fentanyl est plus efficace que le rémifentanil à prévenir des augmentations de la vitesse circulatoire cérébrale pendant l’intubation chez les enfants



Le contrôle des réponses hémodynamiques cérébrale et générale à la laryngoscope et à l’intubation trachéale peut influencer de façon déterminante l’évolution clinique des enfants de neurochirurgie. La présente étude a comparé les effets du rémifentanil et du fentanyl sur la vitesse du flux sanguin cérébral (VFSC) et sur le profil hémodynamique pendant la laryngoscopie et l’intubation trachéale chez des enfants soumis à une anesthésie au sévoflurane.


Soixante enfants en bonne santé devant subir une intervention dentaire sous anesthésie générale ont été choisis pour l’étude. Chaque enfant a été assigné au hasard pour recevoir une perfusion de rémifentanil ou de fentanyl selon une vitesse de 0,75, 1,0 ou 1,5 μg·kg−1·min−1, après l’induction de l’anesthésie avec du sévoflurane à 2 %. La vitesse circulatoire de l’artère cérébrale moyenne a été mesurée par Doppler transcrânien (DTC). La perfusion a commencé après la réalisation des mesures de base des variables hémodynamiques et du DTC. Les mesures ont été prises aux deux minutes, en commençant quatre minutes avant la laryngoscopie jusqu’à quatre minutes après l’intubation nasotrachéale.


Avant l’intubation trachéale, le rémifentanil, comparé au fentanyl, a causé une baisse plus importante de la pression de l’artère moyenne et de la VFSC (P < 0,001). Pendant la laryngoscopie et pendant deux minutes après l’intubation trachéale, la VFSC a augmenté avec le rémifentanil (P < 0,05) alors qu’elle est demeurée stable avec le fentanyl.


Cette étude montre que le fentanyl a été plus efficace que le rémifentanil à prévenir des hausses de la VFSC pendant et immédiatement après la laryngoscopie et l’intubation trachéale chez des enfants sous anesthésie avec du sévoflurane. Le fentanyl, comparativement au rémifentanil, semble fournir aussi un profil hémodynamique plus stable avant la laryngoscopie et l’intubation trachéale.


  1. 1.
    Kovac AL. Controlling the hemodynamic response to laryngoscopy and endotracheal intubation. J Clin Anesth 1996; 8: 63–79.PubMedCrossRefGoogle Scholar
  2. 2.
    Thomson IR. The haemodynamic response to intubation: a perspective. Can J Anaesth 1989; 36: 367–9.PubMedGoogle Scholar
  3. 3.
    Millar C, Bissonnette B. Awake intubation increases intracranial pressure without affecting cerebral blood flow velocity in infants. Can J Anaesth 1994; 41: 281–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Rosow C. An overview of remifentanil. Anesth Analg 1999; 89: S1–3.PubMedCrossRefGoogle Scholar
  5. 5.
    Glass PSA, Hardman D, Kamiyama Y, et al. Preliminary pharmacokineics and pharmacodynamics of an ultra-short-acting opioid: remifentanil (GI87084B). Anesth Analg 1993; 77: 1031–40.PubMedCrossRefGoogle Scholar
  6. 6.
    Egan TD, Lemmens HJM, Fiset P, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 1993; 79: 881–92.PubMedCrossRefGoogle Scholar
  7. 7.
    Westmoreland CL, Hoke JF, Sebel PS, Hug CC Jr, Muir KT. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatients surgery. Anesthesiology 1993; 79: 893–903.PubMedCrossRefGoogle Scholar
  8. 8.
    Bissonnette B, Benson LN. Closure of persistently patent arterial duct and its impact on cerebral circulatory haemodynamics in children. Can J Anaesth 1998; 45: 199–205.PubMedGoogle Scholar
  9. 9.
    Kolbitsch C, Hormann C, Schmidauer C, Ortler M, Burtscher J, Benzer A. Hypocapnia reverses the fentanyl-induced increase in cerebral blood flow velocity in awake humans. J Neurosurg Anesthesiol 1997; 9: 313–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Hanel F, Werner C, von Knobelsdorff G, Schulte am Esch J. The effects of fentanyl and sufentanil on cerebral hemodynamics. J Neurosurg Anesthesiol 1997; 9: 223–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Mayer N, Weinstabl C, Podreka I, Spiss CK. Sufentanil does not increase cerebral blood flow in healthy human volunteers. Anesthesiology 1990; 73: 240–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Ostapkovich ND, Baker KZ, Fogarty-Mack P, Sisti MB, Young WL. Cerebral blood flow and CO2 reactivity is similar during remifentanil/N2O and fentanyl/N2O anesthesia. Anesthesiology 1998; 89: 358–63.PubMedCrossRefGoogle Scholar
  13. 13.
    Stephan H, Groger P, Weyland A, Hoeft A, Sonntag H. The effect of sufentanil on cerebral blood flow, cerebral metabolism and the CO2 reactivity of the cerebral vessels in man (German). Anaesthesist 1991; 40: 153–60.PubMedGoogle Scholar
  14. 14.
    Sandor P, De Jong W, De Wied D. Endorphinergic mechanisms in cerebral blood flow autoregulation. Brain Res 1986; 386: 122–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Werner C, Hoffman WE, Baughman VL, Albrecht RF, Schulte am Esch J. Effects of sufentanil on cerebral blood flow, cerebral blood flow velocity, and metabolism in dogs. Anesth Analg 1991; 72: 177–81.PubMedGoogle Scholar
  16. 16.
    Matta BF, Heath KJ, Tipping K, Tipping K, Summors AC. Direct cerebral vasodilatory effects of sevoflurane and isoflurane. Anesthesiology 1999; 91: 677–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Thompson JP, Hall AP, Russell J, Cagney B, Rowbotham DJ. Effect of remifentanil on the haemodynamic response to orotracheal intubation. Br J Anaesth 1998; 80: 467–9.PubMedGoogle Scholar
  18. 18.
    Alexander R, Olufolabi AJ, Booth J, El-Moalem HE, Glass PS. Dosing study of remifentanil and propofol for tracheal intubation without the use of muscle relaxants. Anaesthesia 1999; 54: 1037–40.PubMedCrossRefGoogle Scholar
  19. 19.
    Dahlgren N, Messeter K. Treatment of stress response to laryngoscopy and intubation with fentanyl. Anaesthesia 1981; 36: 1022–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Fairgrieve R, Rowney D, Bissonnette B. Effects of sevoflurane on cerebral blood flow velocity in children. Anesthesiology 2000; 93: A1305 (abstract).Google Scholar
  21. 21.
    Gupta S, Heath K, Matta BF. Effect of incremental doses of sevoflurane on cerebral pressure autoregulation in humans. Br J Anaesth 1997; 79: 469–72.PubMedGoogle Scholar
  22. 22.
    Cho S, Fujigaki T, Uchiyama Y, Fukusaki M, Shibata O, Sumikawa K. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Transcranial Doppler Study. Anesthesiology 1996; 85: 755–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Glass PSA, Iselin-Chaves IA, Goodman D, Delong E, Hermann DJ. Determination of the potency of remifentanil compared with alfentanil using ventilatory depression as the measure of opioid effect. Anesthesiology 1999; 90: 1556–63.PubMedCrossRefGoogle Scholar
  24. 24.
    Jhaveri R, Joshi P, Batenhorst R, Baughman V, Glass PSA. Dose comparison of remifentanil and alfentanil for loss of consciousness. Anesthesiology 1997; 87: 253–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Glass PSA, Gan TJ, Howell S. A review of the pharmacokinetics and pharmacodynamics of remifentanil. Anesth Analg 1999; 89: S7–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Egan TD. Clinical application of a short-acting opioid in the operating room and the intensive care unit (Letter). New Frontiers in Anesthesiology. A report from Anesthesiology Update, Toronto, Ontario November 29, 2000.Google Scholar
  27. 27.
    Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke 1994; 25: 793–7.PubMedGoogle Scholar
  28. 28.
    Bishop CCR, Powell S, Rutt D, Browse NL. Transcranial Doppler measurement of middle cerebral artery blood flow velocity: a validation study. Stroke 1986; 17: 913–5.PubMedGoogle Scholar
  29. 29.
    Pilato MA, Bissonnette B, Lerman J. Transcranial Doppler: response of cerebral blood-flow velocity to carbon dioxide in anaesthetized children. Can J Anaesth 1991; 38: 37–42.PubMedGoogle Scholar
  30. 30.
    Huber P, Handa J. Effect of contrast material, hypercapnia, hyperventilation, hypertonic glucose and papaverine on the diameter of the cerebral arteries. Angiographic determination in man. Invest Radiol 1967; 2: 17–32.PubMedCrossRefGoogle Scholar
  31. 31.
    Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery 1993; 32: 737–41.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2002

Authors and Affiliations

  • Claude Abdallah
    • 1
  • Cengiz Karsli
    • 1
  • Bruno Bissonnette
    • 1
  1. 1.Department of AnaesthesiaThe Hospital for Sick Children and the University of TorontoTorontoCanada

Personalised recommendations