Canadian Journal of Anaesthesia

, Volume 49, Issue 7, pp 718–723 | Cite as

Alfentanil does not increase resistance of the respiratory system in ASA I patients ventilated mechanically during general anesthesia

  • Giorgio Conti
  • Germano De Cosmo
  • Maria Grazia Bocci
  • Massimo Antonelli
  • Giorgia Ferro
  • Roberta Costa
  • Geremia Zito
  • Rodolfo Proietti
Cardiothoracic Anesthesia, Respiration and Airway



Several experimental and clinical studies have demonstrated a direct bronchoconstrictor effect of opioids on smooth bronchial musculature followingiv administration. The aim of this study was to evaluate the effects of alfentanil on respiratory system mechanics in a group of ASA I patients ventilated mechanically during general anesthesia.

Clinical features

Twenty consecutive ASA I patients (ten men and ten women) scheduled for general surgery interventions were studied (mean age 45.4 ± 9.9 yr, mean weight 61.9 ± 6.7 kg). Exclusion criteria were a history of chronic obstructive pulmonary disease, asthma or other pulmonary disease, atopy, wheezes, smoking and age below 18 yr. Subjects were randomly divided in two groups: Group A, receiving alfentanil at a 15 μg·kg−1 dose and Group B receiving alfentanil at a 30 μg·kg−1 dose. Respiratory mechanic variables were acquired at baseline (T0) and after three, ten and 15 min (T1, T2 and T3, respectively). We compared the basal values to the values measured at each time interval; basal values, prior to drug administration, served as control for each patient. P values < 0.05 were considered statistically significant.


We did not observe significant differences in respiratory mechanic variables after the administration of alfentanil, 15 and 30 μg·kg−1. More specifically, respiratory system compliance and the different subcomponents of respiratory system resistances (i.e., maximum, minimum and delta resistance of respiratory system) were within normal limits and did not vary after alfentanil administration.


No respiratory adverse effect was reported after alfentaniliv administration.


Alfentanil Smooth Bronchial Musculature Respiratory System Compliance Cisatracurium Besilate Respiratory System Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

L’alfentanil n’augmente pas la résistance du système respiratoire chez des patients d’état physique ASA I ventilés mécaniquement pendant l’anesthésie générale



De nombreuses études expérimentales et cliniques ont démontré un effet bronchoconstricteur direct des opioïdes intraveineux sur la musculature lisse bronchique. Le but de notre étude était d’évaluer les effets de l’alfentanil sur la mécanique du système respiratoire chez un groupe de patients ASA I ventilés mécaniquement pendant une anesthésie générale.

Éléments cliniques

Vingt patients consécutifs ASA I ont été étudiés (dix hommes) pendant une intervention de chirurgie générale (âge moyen 45,4 ± 9,9 ans, poids moyen 61,9 ± 6,7 kg). Les critères d’exclusion étaient: un historique de bronchite chronique obstructive, asthme ou autres maladies pulmonaires, allergies, tabagisme, sibilances à l’auscultation pulmonaire et un âge inférieur à 18 ans. Les sujets ont été randomisés en deux groupes: Groupe A, recevant 15 μg·kg− 1 d’alfentanil et Groupe B recevant 30 μg·kg− 1 d’alfentanil. Les variables de la mécanique respiratoire ont été mesurés au départ (T0) et après trois, dix et 15 min (T1, T2 et T3, respectivement. Les données de base ont été comparées avec les données mesurées après chaque intervalle de temps, les valeurs de P < 0,05 ont été jugées statistiquement significatives.


Aucune différence significative entre les variables de mécanique respiratoire n’a été observée après l’administration d’alfentanil, aussi bien après une dose de 15 que de 30 μg·kg− 1. En particulier, la compliance du système respiratoire et les différentes variables des composantes des résistances du système respiratoire (les résistances maximale, minimale et delta du système respiratoire) se situaient dans des limites normales et n’ont pas montré de variations significatives après alfentanil.


Aucun effet secondaire sur la mécanique respiratoire n’a été remarqué après l’administration iv d’alfentanil.


  1. 1.
    Gentil B, Macquin-Mavier I, Harf A. Fentanyl-induced airway hyperreactivity in the guinea pig. Eur J Pharmacol 1989; 159: 181–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen R, Lefrant JY, Laracine M, Rebiere T, Eledjam JJ. Effect of fentanyl on ventilatory resistances during barbiturate general anaesthesia. Br J Anaesth 1992; 69: 595–8.CrossRefGoogle Scholar
  3. 3.
    Yasuda I, Hirano T, Yusa T, Satoh M. Tracheal constriction by morphine and by fentanyl in man. Anesthesiology 1978; 49: 117–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Cigarini I, Bonnet F, Lorino AM, Harf A, Desmonts JM. Comparison of the effects of fentanyl on respiratory mechanics under propofol or thiopental anaesthesia. Acta Anaesth Scand 1990; 34: 253–6.PubMedGoogle Scholar
  5. 5.
    Levy JH, Brister NW, Shearin A, et al. Wheal and flare responses to opioids in humans. Anesthesiology 1989; 70: 756–60.PubMedCrossRefGoogle Scholar
  6. 6.
    Baley PL, Egan TD, Stanley TH. Intravenous opioid anesthetics.In: Miller RD (Ed.). Anesthesia, 5th ed. 2000; 1: 314–5; 333–4.Google Scholar
  7. 7.
    Taeger K, Weninger E, Schmelzer F, Adt M, Franke N, Peter K. Pulmonary kinetics of fentanyl and alfentanil in surgical patients. Br J Anaesth 1988; 61: 425–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Waters CM, Krejcie TC, Avram MJ. Facilitated uptake of fentanyl, but not alfentanil, by human pulmonary endothelial cells. Anesthesiology 2000; 93: 825–31.PubMedCrossRefGoogle Scholar
  9. 9.
    de Wet C, Moss J. Metabolic functions of the lung. Anesthesiol Clin North Am 1998; 16: 181–99.CrossRefGoogle Scholar
  10. 10.
    Ruiz Neto PP, Auler JOC Jr. Respiratory mechanical properties during fentanyl and alfentanil anaesthesia. Can J Anaesth 1992; 39: 458–65.Google Scholar
  11. 11.
    Bryson HM, Faulds D. Cisatracurium besilate. A review of its pharmacology and clinical potential in anaesthetic practice. Drugs 1997; 53: 848–66.PubMedGoogle Scholar
  12. 12.
    Sly PD, Bates JH, Milic-Emili J. Measurement of respiratory mechanics using the Siemens Servo Ventilator 900 C. Pediatr Pulmonol 1987; 3: 400–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Bates JH, Hunter IW, Sly PD, Okubo S, Filiatrault S, Milic-Emili J. Effect of valve closure time on the determination of respiratory resistance by flow interruption. Med Biol Eng Comput 1987; 25: 136–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Similowski T, Levy P, Corbeil C, et al. Viscoelastic behavior of lung and chest wall in dogs determined by flow interruption. J Appl Physiol 1989; 67: 2219–29.PubMedGoogle Scholar
  15. 15.
    D’Angelo E, Calderini E, Torri G, Robatto FM, Bono D, Milic-Emili J. Respiratory mechanics in anesthetizedparalyzed humans: effect of flow, volume, and time. J Appl Physiol 1989; 67: 2556–64.PubMedGoogle Scholar
  16. 16.
    Milic-Emili J, Robatto FM, Bates JHT. Respiratory mechanics in anaesthesia. Br J Anaesth 1990; 65: 4–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson A, Bengtsson M. Comparison of anaesthesia ventilators using a lung model. Acta Anaesthesiol Scand 1990; 34: 222–6.PubMedGoogle Scholar
  18. 18.
    D’Angelo E, Robatto FM, Calderini E, et al. Pulmonary and chest wall mechanics in anesthetized paralyzed humans. J Appl Physiol 1991; 70: 2602–10.PubMedGoogle Scholar
  19. 19.
    Conti G, De Blasi RA, Lappa A, et al. Evaluation of respiratory system resistance in mechanically ventilated patients: the role of the endotracheal tube. Intensive Care Med 1994; 20: 421–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Petros AJ, Lamond CT, Bennett D. The Bicore pulmonary monitor. A device to assess the work of breathing while weaning from mechanical ventilation. Anaesthesia 1993; 48: 985–8.PubMedGoogle Scholar
  21. 21.
    Flacke JW, Flacke WE, Bloor BC, Van Etten AP, Kripke BJ. Histamine release by four narcotics: a doubleblind study in humans. Anesth Analg 1987; 66: 723–30.PubMedCrossRefGoogle Scholar
  22. 22.
    Bowdle TA. Adverse effects of opioid agonists and agonist -antagonists in anaesthesia. Drug saf 1998; 19: 173–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Lien CA, Belmont MR, Abalos A, et al. The cardiovascular effects and histamine-releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995; 82: 1131–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Bilbault P, Boisson-Bertrand D, Duvivier C, Peslin R, Laxenaire MC. Influence de l’association propofolalfentanil sur les resistances bronchiques du sujet asthmatique (French). Ann Fr Anesth Reanim 1991; 10: 264–8.PubMedGoogle Scholar
  25. 25.
    Bremerich DH. Anesthesia in bronchial asthma (German). Anasthesiol Intensivmed Notfallmed Schmerzther 2000; 35: 545–58.PubMedCrossRefGoogle Scholar
  26. 26.
    Hirota K, Sato T, Hashimoto Y, et al. Relaxant effect of propofol on the airway in dogs. Br J Anaesth 1999; 83: 292–5.PubMedGoogle Scholar
  27. 27.
    Mustafa S, Thulesius L, Thulesius O. The contractile response of thiopental in large and small ovine airways. Acta Anaesthesiol Scand 1994; 38: 499–504.PubMedGoogle Scholar
  28. 28.
    Wu RSC, Wu KC, Sum DCW, Bishop MJ. Comparative effects of thiopentone and propofol on respiratory resistance after tracheal intubation. Br J Anaesth 1996;77: 735–8.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2002

Authors and Affiliations

  • Giorgio Conti
    • 1
  • Germano De Cosmo
    • 1
  • Maria Grazia Bocci
    • 1
  • Massimo Antonelli
    • 1
  • Giorgia Ferro
    • 1
  • Roberta Costa
    • 1
  • Geremia Zito
    • 1
  • Rodolfo Proietti
    • 1
  1. 1.Department of AnesthesiaUniversity of Cattolica del Sacro Cuore di Roma, Policlinico Universitario “A. Gemelli”RomeItaly

Personalised recommendations