Advertisement

Case report: Retroperitoneoscopic pheochromocytoma removal in an adult with Eisenmenger’s syndrome

  • Geoff A. Bellingham
  • Achal K. Dhir
  • Patrick P. Luke
Case Reports/Case Series

Abstract

Purpose: Patients with uncorrected or palliated, complex congenital heart lesions requiring surgery can benefit from laparoscopic techniques, but retroperitoneal insufflation may render them hemodynamically unstable. Alterations in cardiopulmonary physiology during retroperitoneal insufflation have been studied, yet there are no cases detailing this approach in patients with congenital heart lesions. We present a case of a pheochromocytoma removal via retroperitoneoscopy in a patient with a palliated, complex heart lesion.

Clinical features: A 28-yr-old woman was admitted for removal of a pheochromocytoma through retroperitoneoscopy. The main feature of her heart disease was a complete atrioventricular canal defect. She eventually developed Eisenmenger’s syndrome and became chronically cyanotic. Retroperitoneal insufflation with CO2 gas did not change hemodynamic variables. Significant increases in peak airway pressures were encountered, possibly due to the distending effects of insufflation, or due to increasing the minute ventilation to reduce exogenous CO2. Arterial CO2 remained stable, but a significant increase between end-tidal and arterial levels became apparent with insufflation. Tumour manipulation led to systemic (and possibly pulmonary) hypertension, which exacerbated ventricular dysfunction. This condition resulted in atrioventricular valve regurgitation, as seen on transesophageal echocardiography, and diminished pulmonary blood flow with subsequent desaturation. These changes resolved with antihypertensive medications. The patient’s trachea was extubated four hours postoperatively, and she recovered uneventfully.

Conclusion: Patients with altered cardiopulmonary physiology may tolerate retroperitoneoscopic insufflation with relative hemodynamic stability. Appropriate use of short-acting, vasoactive drugs and aggressive monitoring of PaCO2 and hemodynamic variables is required.

Keywords

Central Venous Pressure Milrinone Pulmonary Blood Flow Peak Airway Pressure Tumour Manipulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Présentation de cas : Ablation rétropéritonéoscopique d’un phéochromocytome chez un adulte souffrant du syndrome d’Eisenmenger

Résumé

Objectif: Les patients ayant des lésions cardiaques congénitales complexes non corrigées ou palliées nécessitant une chirurgie peuvent profiter de techniques laparoscopiques; toutefois, un rétropneumopéritoine peut rendre leur hémodynamie instable. Les modifications de la physiologie cardiopulmonaire pendant un rétropneumopéritoine ont été étudiées, mais il n’existe aucun cas décrivant cette approche chez des patients souffrant d’anomalies cardiaques congénitales. Nous présentons un cas d’ablation de phéochromocytome par rétropéritonéoscopie chez un patient ayant une anomalie cardiaque congénitale complexe palliée.

Éléments cliniques: Une femme de 28 ans a été admise pour une ablation de phéochromocytome par rétropéritonéoscopie. Une déficience totale de son canal atrio-ventriculaire constituait l’élément principal de sa maladie cardiaque. Elle a finalement développé un syndrome d’Eisenmenger et est devenue chroniquement cyanotique. Un rétropneumopéritoine avec du gaz CO2 n’a pas modifié les variables hémodynamiques. Des augmentations significatives dans les pics de pression ventilatoire ont été observées, possiblement provoquées par les effets distensifs de l’insufflation ou par l’augmentation de la ventilation minute pour réduire le CO2 exogène. Le CO2 artériel est resté stable, mais une augmentation significative entre les niveaux télé-expiratoire et artériel est apparue lors de l’insufflation. La manipulation tumorale a provoqué une hypertension systémique (et possiblement pulmonaire), ce qui a exacerbé la dysfonction ventriculaire. La conséquence de cette condition a été une régurgitation des valves atrio-ventriculaires, telle qu’observées par échocardiographie transoesophagienne, et un débit sanguin pulmonaire réduit avec une désaturation subséquente. Ces modifications ont pu être contrées avec des médicaments anti-hypertenseurs. La trachée de la patiente a été extubée quatre heures après l’opération, et elle s’est rétablie normalement.

Conclusion: Les patients présentant une physiologie cardiopulmonaire altérée pourraient tolérer un rétropneumopéritoine et maintenir une hémodynamie relativement stable. L’utilisation adéquate de médicaments vasoactifs à action courte et une surveillance agressive de la PaCO2 et des variables hémodynamiques sont nécessaires.

References

  1. 1.
    Lovell AT. Anaesthetic implications of grown-up congenital heart disease. Br J Anaesth 2004; 93: 129–39.PubMedCrossRefGoogle Scholar
  2. 2.
    Goodwin TM, Gherman RB, Hameed A, Elkayam U. Favorable response of Eisenmenger syndrome to inhaled nitric oxide during pregnancy. Am J Obstet Gynecol 1999; 180: 64–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Budts W, Van Pelt N, Gillyns H, Gewillig M, Van De Werf F, Janssens S. Residual pulmonary vasoreactivity to inhaled nitric oxide in patients with severe obstructive pulmonary hypertension and Eisenmenger syndrome. Heart 2001; 86: 553–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Kiely DG, Cargill RI, Lipworth BJ. Effects of hypercapnia on hemodynamic, inotropic, lusitropic, and electrophysiologic indices in humans. Chest 1996; 109:1215–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Wolf JS Jr,Monk TG, McDougall EM, McClennan BL, Clayman RV. The extraperitoneal approach and subcutaneous emphysema are associated with greater absorption of carbon dioxide during laparoscopic renal surgery. J Urol 1995; 154: 959–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Streich B, Decailliot F, Perney C, Duvaldestin P. Increased carbon dioxide absorption during retroperitoneal laparoscopy. Br J Anaesth 2003; 91: 793–6.PubMedCrossRefGoogle Scholar
  7. 7.
    Mullett CE, Viale JP, Sagnard PE, et al. Pulmonary CO2 elimination during surgical procedures using intra- or extraperitoneal CO2 insufflation. Anesth Analg 1993; 76: 622–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Wulkan ML, Vasudevan SA. Is end-tidal CO2 an accurate measure of arterial CO2 during laparoscopic procedures in children and neonates with cyanotic congenital heart disease? J Pediatr Surg 2001; 36: 1234–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Lazzell VA, Burrows FA. Stability of the intraoperative arterial to end-tidal carbon dioxide partial pressure difference in children with congenital heart disease. Can J Anaesth 1991; 38: 859–65.PubMedCrossRefGoogle Scholar
  10. 10.
    Burrows FA. Physiologic dead space, venous admixture, and the arterial to end-tidal carbon dioxide difference in infants and children undergoing cardiac surgery. Anesthesiology 1989; 70: 219–25.PubMedCrossRefGoogle Scholar
  11. 11.
    Fletcher R. Relationship between alveolar deadspace and arterial oxygenation in children with congenital cardiac disease. Br J Anaesth 1989; 62: 168–76.CrossRefGoogle Scholar
  12. 12.
    Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal carbon dioxide tension difference in anesthetized man. J Appl Physiol 1960; 15: 383–9.PubMedGoogle Scholar
  13. 13.
    Whittenberger JL, McGregor M, Berglund E, Borst HG. Influence of state of inflation of the lung on pulmonary vascular resistance. J Appl Physiol 1960; 15: 878–82.PubMedGoogle Scholar
  14. 14.
    Robotham JL, Lixfeld W, Holland L, et al. The effects of positive end-expiratory pressure on right and left ventricular performance. Am Rev Respir Dis 1980;121: 677–83.PubMedGoogle Scholar
  15. 15.
    Pinsky MR, Desmet JM, Vincent JL. Effect of positive end-expiratory pressure on right ventricular function in humans. Am Rev Respir Dis 1992; 146: 681–7.PubMedGoogle Scholar
  16. 16.
    Giebler RM, Kabatnik M, Stegen BH, Scherer RU, Thomas M, Peters J. Retroperitoneal and intraperitoneal CO2 insufflation have markedly different cardiovascular effects. J Surg Res 1997; 68: 153–60.PubMedCrossRefGoogle Scholar
  17. 17.
    Kashtan J, Green JF, Parsons EQ, Holcroft JW. Hemodynamic effect of increased abdominal pressure. J Surg Res 1981; 30: 249–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Giebler RM, Behrends M, Steffens T, Walz MK, Peltgen K, Peters J. Intraperitoneal and retroperitoneal carbon dioxide insufflation evoke different effects on caval vein pressure gradients in humans: evidence for the starling resistor concept of abdominal venous return. Anesthesiology 2000; 92: 1568–80.PubMedCrossRefGoogle Scholar
  19. 19.
    Atallah F, Bastide-Heulin T, Soulie M, et al. Haemodynamic changes during retroperitoneoscopic adrenalectomy for phaeochromocytoma. Br J Anaesth 2001; 86: 731–3.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2008

Authors and Affiliations

  • Geoff A. Bellingham
    • 4
  • Achal K. Dhir
    • 4
  • Patrick P. Luke
    • 1
    • 2
    • 3
  1. 1.the Division of UrologyUniversity of Western OntarioLondonCanada
  2. 2.the Multi-Organ Transplant Program (MOTP)LondonCanada
  3. 3.the Canadian Surgical Technologies and Advanced Robotics (CSTAR)LondonCanada
  4. 4.Department of Anesthesia and Perioperative Medicine, London Health Sciences Centreand the University of Western OntarioLondonCanada

Personalised recommendations