Advertisement

Desflurane reduces the effective therapeutic infusion rate (ETI) of cisatracurium more than isoflurane, sevoflurane, or propofol

  • Thomas M. Hemmerling
  • Juergen Schuettler
  • Helmut Schwilden
General Anesthesia

Abstract

Purpose

The present study investigated the interaction between the cumulative dose requirements of cisatracurium and anesthesia with isoflurane, sevoflurane, desflurane or propofol using closedloop feedback control.

Methods

Fifty-six patients (18–85 yr, vitrectomies of more than one hour) were studied. In the volatile anesthetics groups, anesthesia was maintained by 1.3 MAC of isoflurane, sevoflurane or desflurane; in the propofol group, anesthesia was maintained by a continuous infusion of 6–8 mg·kg−1hr−1 propofol. After bolus application of 0.1 mgmg·kg−1 cisatracurium, aTI%-level of 10% of control level (train-of-four stimulation every 20 sec) was maintained using closed-loop feedback controlled infusion of cisatracurium. The effective therapeutic infusion rate (ETI) was estimated from the asymptotic steady-state infusion rate lss The lss was derived from fitting an asymptotic line to the measured cumulative dose requirement curve. The ETI of the different groups was compared using Kruskal-Wallistest, followed by rank sum test, corrected for the number of comparisons,P < 0.05 was regarded as showing significant difference.

Results

ETI in the isoflurane group was 35.6 ±8.6 μg·m−2·min−1, in the sevoflurane group 36.4-± 11.9 μg·m−2·min−1, in the desflurane group 23.8 ± 6.3 μg·m−2·min−1. The ETI of the volatile anesthetic groups were all significantly lower than the ETI in the propofol group at 6 1.7 ± 25.3 μg·m−2·min−1 (P < 0.002). The ETI in the desflurane group was significantly lower than in all other groups (P < 0.02).

Conclusion

In comparison to propofol, isoflurane, sevoflurane and desflurane reduce the cumulative dose requirements of cisatracurium to maintain a 90% neuromuscular blockade by 42%, 41 % and 60%, respectively.

Keywords

Isoflurane Sevoflurane Vecuronium Enflurane Rocuronium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Le desflurane, comparé à l’isoflurane, au sêvoflurane ou au propofol, réduit davantage la vitesse de perfusion thérapeutique utile (PTU) du cisatracurium

Résumé

Objectif

Rechercher l’interaction entre la dose cumulative nécessaire de cisatracurium et l’anesthésie avec de l’isoflurane, du sévoflurane, du desflurane ou du propofol, en utilisant un système de rétroaction en boucle fermée.

Méthode

L’étude a porté sur 56 patients (18–85 ans, vitrectomie de plus d’une heure). Chez les patients qui ont reçu un anesthésique volatil, l’anesthésie a été entretenue avec 1,3 CAM d’isoflurane, de sévoflurane ou de desflurane; chez ceux qui ont eu du propofol, on a administré une perfusion continue de 6–8 mg·kg−1·h−1 de propofol. Après l’administration d’un bolus de 0,1 mg·kg−1·h−1 de cisatracurium, une première réponse Tlà 10 % (d’une stimulation en train-de-quatre répétée toutes les 20 s) a été maintenue au moyen d’une perfusion de cisatracurium contrôlée par un système de rétroaction en boucle fermée. La vitesse de perfusion thérapeutique utile (PTU) a été évaluée à partir de la vitesse de perfusion asymptotique àl’équilibre P. La Pe a été dérivée de l’ajustement d’une ligne asymptotique à la courbe de la dose cumulative nécessaire. La PTU des différents groupes a été comparée à l’aide du test de Kruskal-Wallis, suivi du test de la somme des rangs, ajusté en fonction du nombre de comparaisons,P < 0,05 a été considéré comme une différence significative.

Résultats

La PTU associée à l’isoflurane a été de 35,6 ± 8,6 mg·m−2·min−1; au sévoflurane, 36,4 ± 11,9 mg·m−2·min−1 et au desflurane, 23,8 ± 6,3 mg·m−2·min−1. La PTU associée aux anesthésiques volatils a été significativement plus basse que celle qui est associée au propofol, 6 1,7 ± 25,3 mg·m−2·min−1 (P < 0,002). La PTU associée au desflurane a été significativement plus basse que celles qui concernent tous les autres anesthésiques (P < 0,02).

Conclusion

Comparés au propofol, l’isoflurane, le sévoflurane et le desflurane réduisent de 42 %, 41 % et 60 %, respectivement, la dose cumulative nécessaire de cisatracurium pour maintenir un blocage neuromusculaire à 90 %.

References

  1. 1.
    Lepage JY, Malinovsky JM, Malinge M, Cozian A, Pinaud M. Comparison of equipotent doses of 51W89 and atracurium. Anesthesiology 1994; 81: A1090 (abstract).CrossRefGoogle Scholar
  2. 2.
    Lien CA, Belmont MR, Abalos A, et al. The cardiovascular effects and histamine -releasing properties of 51W89 in patients receiving nitrous oxide/opioid/barbiturate anesthesia. Anesthesiology 1995; 82: 1131–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Doenicke A, Soukup J, Hoernecke R, Moss J. The lack of histamine release with cisatracurium: a double-blind comparison with vecuronium. Anesth Analg 1997; 84: 623–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Vanlinthout LEH, Booij LHD, Van Egmond J, Robertson EN. Effect of isoflurane and sevoflurane on the magnitude and time course of neuromuscular block produced by vecuronium, pancuronium and atracurium. Br J Anaesth 1996; 76: 389–95.PubMedGoogle Scholar
  5. 5.
    O’Hara DA, Derbyshire GJ, Overdyk FJ, Bogen DK, Marshall BE. Closed-loop infusion of atracurium with four different anesthetic techniques. Anesthesiology 1991; 74: 258–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Wulf H, Kahl M, Ledowski T. Augmentation of the neuromuscular blocking effects of cisatracurium during desflurane, sevoflurane, isoflurane or total i.v. anaesthesia. Br J Anaesth 1998; 80: 308–12.PubMedGoogle Scholar
  7. 7.
    Kim KS, Chung CW, Shin WJ. Cisatracurium neuromuscular block at the adductor pollicis and the laryngeal adductor muscles in humans. Br J Anaesth 1999; 83: 483–4.PubMedGoogle Scholar
  8. 8.
    Carroll MI, Mirakhur RK, Lowry DW, McCourt KC, Kerr C. Neuromuscular blocking effects and train-of-four fade with cisatracurium: comparison with other non-depolarising relaxants. Anaesthesia 1998; 53: 1169–73.PubMedCrossRefGoogle Scholar
  9. 9.
    Mellinghoff H, Radbruch L, Diefenbach C, Buzello W. A comparison of cisatracurium and atracurium: onset of neuromuscular block after bolus injection and recovery after subsequent infusion. Anesth Analg 1996; 83: 1072–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Olkkola KT, Schwilden H. Adaptive closed-loop feedback control of vecuronium-induced neuromuscular relaxation. Eur J Anaesth 1991; 8: 7–12.Google Scholar
  11. 11.
    Olkkola KT, Kansanaho M. Quantifying the interaction of vecuronium with enflurane using closed-loop feedback control of vecuronium infusion. Acta Anaesthesiol Scand 1995; 39: 489–93.PubMedGoogle Scholar
  12. 12.
    Olkkola KT, Schwilden H. Quantitation of the interaction between atracurium and succinylcholine using closed-loop feedback control of infusion of atracurium. Anesthesiology 1990; 73: 614–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Kansanaho M, Olkkola KT. Quantifying the effect of enflurane on atracurium infusion requirements. Can J Anaesth 1995; 42: 103–8.PubMedGoogle Scholar
  14. 14.
    Olkkola KT, Tammisto T. Quantifying the interaction of rocuronium (Org 9426) with etomidate, fentanyl, midazolam, propofol, thiopental, and isoflurane using closed-loop feedback control of rocuronium infusion. Anesth Analg 1994; 78: 691–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Hendrickx JFA, Soetens M, Van der Donck A, Meeuwis H, Smolders F, De Wolf AM. Uptake of desflurane and isoflurane during closed-circuit anesthesia with spontaneous and controlled mechanical ventilation. Anesth Analg 1997; 84: 413–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Mapleson WW. Effect of age on MAC in humans: a meta-analysis. Br J Anaesth 1996; 76: 179–85.PubMedGoogle Scholar
  17. 17.
    Ropcke H, Wartenberg HC, Konen-Bergmann M. The interaction of desflurane and nitrous oxide on EEG during surgical stimulation is additive. Anesthesiology 1998; 89: A108 (abstract).CrossRefGoogle Scholar
  18. 18.
    Rehberg B, Bouillon T, Zinserling J, Hoeft A Comparative pharmacodynamic modeling of the electroencephalography-slowing effect of isoflurane, sevoflurane, and desflurane. Anesthesiology 1999; 91: 397–405.PubMedCrossRefGoogle Scholar
  19. 19.
    Ghouri AT, White PT. Comparative effects of desflurane and isoflurane on vecuronium-induced neuromuscular blockade. J Clin Anesth 1992; 4: 34–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Gan TJ, Quill TJ, Pressley C, Parrillo S, Glass PSA. A comparison of mivacurium dosage requirements during isoflurane and desflurane anesthesia. J Clin Anesth 1996; 8: 301–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhou TJ, Coloma M, White PF, et al. Spontaneous recovery profile of rapacuronium during desflurane, sevoflurane, or propofol anesthesia for outpatient laparoscopy. Anesth Analg 2000; 91: 596–600.PubMedCrossRefGoogle Scholar
  22. 22.
    Khuenl-Brady KS, Agoston S, Miller RD. Interaction of ORG 9426 and some of the clinically used intravenous anaesthetic agents in the cat. Acta Anaesthiol Scand 1992; 36: 260–3.CrossRefGoogle Scholar
  23. 23.
    Krieg N, Rutten JMJ, Crul JF, Booij LHDJ. Preliminary review of the interactions of ORG NC 45 with anaesthetics and antibiotics in animals. Br J Anaesth 1980; 52: 33S-6S.PubMedCrossRefGoogle Scholar
  24. 24.
    de Rossi L, Fritz H, Krober L, Klein U. Cisatricurium in the orbicularis oculi muscle. Comparisn of the neuromuscular action of cisatracurium and atracurium in the orbicularis oculi muscle and the adductor pollicis muscle. (German). Anaesthesist. 1999; 48: 602–6.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 2001

Authors and Affiliations

  • Thomas M. Hemmerling
    • 1
  • Juergen Schuettler
    • 1
  • Helmut Schwilden
    • 1
  1. 1.Department of AnesthesiologyUniversity of Erlangen-NurembergGermany

Personalised recommendations