Advertisement

Canadian Journal of Anaesthesia

, Volume 46, Issue 4, pp 335–341 | Cite as

Decreased respiratory depression during emergence from anesthesia with sevoflurane/N2O than with sevoflurane alone

  • Sveinn Einarsson
  • Anders Bengtsson
  • Ola Stenqvist
  • Jan Peter Bengtson
Reports of Investigation

Abstract

Purpose

To investigate ventilation and gas elimination during the emergence from inhalational anesthesia with controlled normoventilation with either sevoflurane/N2O or sevoflurane alone.

Methods

Twenty-four ASA I–II patients scheduled for abdominal hysterectomy were randomly allocated to receive either 1.3 MAC sevoflurane/N2O (n= 12) or equi-MAC sevoflurane (n= 12) in 30% oxygen (O2). Expired minute ventilation volumes (VE), end-tidal (ET) concentrations of O2, carbon dioxide (CO2), sevoflurane and N2O as well as pulse oximetry saturation (SpO2) and CO2 elimination rates (VCO2) were measured. The ET concentrations of sevoflurane and N2O were converted to total MAC values and gas elimination was expressed in terms of MAC reduction. Time to resumption of spontaneous breathing and extubation were recorded and arterial blood gas analysis was performed at the end of controlled normoventilation and at the beginning of spontaneous breathing.

Results

Resumption of spontaneous breathing and extubation were 8 and 13 min less, respectively, in the sevoflurane/N2O than in the sevoflurane group. Spontaneous breathing was resumed in both groups when pH had decreased by 0.07–0.08 and PaCO2 increased by 1.3–1.5 kPa. Depression of VE and VCO2 were less, and MAC reduction more rapid in the sevoflurane/N2O than in the sevoflurane group.

Conclusions

Respiratory recovery was faster after sevoflurane/N2O than sevoflurane anesthesia. Changes in pH and PaCO2 rather than absolute values were important for resumption of spontaneous breathing after controlled normoventilation. In both groups, the tracheas were extubated at about 0.2 MAC.

Keywords

Sevoflurane Spontaneous Breathing Desflurane Sevoflurane Anesthesia Volatile Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Objectif

Observer la ventilation et l’élimination des gaz pendant la récupération de l’anesthésie par inhalation avec une normoventilation contrôlée, en utilisant un mélange de sévoflurane/N2O ou seulement du sévoflurane.

Méthode

Vingt-quatre patientes ASA I–II, dont l’hystérectomie abdominale était prévue, ont été réparties au hasard pour recevoir soit 1,3 CAM de sévoflurane/N2O (n = 12) ou la CAM équivalente de sévoflurane (n = 12) dans 30 % d’oxygène (O2). On a pris les mesures suivantes: volumes expirés de ventilation-minute (VE), concentrations d’O2 de fin d’expiration, gaz carbonique (CO2), sévoflurane et N2O, saturation en oxygène par oxymétrie puisée (SpO2) et vitesses d’élimination du CO2 (VCO2). Les concentrations de sévoflurane et de N2O de fin d’expiration ont été transformées en valeurs de CAM totales et l’élimination des gaz a été exprimée en termes de réduction de CAM. Le temps nécessaire au retour de la respiration spontanée et à l’extubation a été noté, l’analyse des gaz du sang artériel a été réalisée à la fin de la normoventilation contrôlée et au début de la respiration spontanée.

Résultats

Le retour de la respiration spontanée et l’extubation ont demandé 8 et 13 min de moins, respectivement, avec le sévoflurane/N2O qu’avec le sévoflurane seul. La reprise de la respiration spontanée s’est faite dans les deux groupes après une baisse du pH de 0,07 – 0,08 et une augmentation de la PaCO2 de 1,3 – 1,5 kPa. La baisse de VE et de VCO2 a été moindre avec le sévoflurane/N2O, mais la réduction de CAM a été plus rapide avec le sévoflurane/N2O.

Conclusion

La récupération respiratoire s’est faite plus rapidement après l’anesthésie avec un mélange de sévoflurane/N2O qu’avec du sévoflurane employé seul. Les changements de pH et de PaCO2, plutôt que les valeurs absolues, ont été importants pour le retour de la respiration spontanée après la normoventilation contrôlée. Dans les deux groupes, l’extubation a été faite à environ 0,2 CAM.

References

  1. 1.
    Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg 1987; 66: 241–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Sarton E, Dahan A, Teppema L, et al. Acute pain and central nervous system arousal do not restore impaired hypoxic ventilatory response during sevoflurane sedation. Anesthesiology 1996; 85: 295–303.PubMedCrossRefGoogle Scholar
  3. 3.
    Doi M, Takahashi T, Ikeda K. Respiratory effects of sevoflurane used in combination with nitrous oxide and surgical stimulation. J Clin Anesth 1994; 6: 1–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Welborn LG, Hannallah RS, Norden JM, Ruttimann UE, Callan CM. Comparison of emergence and recovery characteristics of sevoflurane, desflurane, and halothane in pediatric ambulatory patients. Anesth Analg 1996; 83: 917–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Sloan MH, Conard PF, Karsunky PK, Gross JB. Sevoflurane versus isoflurane: induction and recovery characteristics with single-breath inhaled inductions of anesthesia. Anesth Analg 1996; 82: 528–32.PubMedCrossRefGoogle Scholar
  6. 6.
    Lien CA, Hemmings HC, Belmont MR, Abalos A, Hollmann C, Kelly RE. A comparison: the efficacy of sevoflurane-nitrous oxide or propofol-nitrous oxide for the induction and maintenance of general anesthesia. J Clin Anesth 1996; 8: 639–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Bengtson JP, Sonander H, Stenqvist O. Gaseous homeostasis during low-flow anaesthesia. Acta Anaesthesiol Scand 1988; 32: 516–21.PubMedGoogle Scholar
  8. 8.
    Eger EI II, Ethans CT. The effects of inflow, overflow and valve placement on economy of the circle system. Anesthesiology 1968; 29: 93–100.PubMedGoogle Scholar
  9. 9.
    Scheller MS, Saidman LJ, Partridge BL. MAC of sevoflurane in humans and the New Zealand white rabbit. Can J Anaesth 1988; 35: 153–6.PubMedGoogle Scholar
  10. 10.
    Hornbein TE, Eger EI II, Winter PM, Smith G, Wetstone D, Smith KH. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 1982; 61: 553–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Katoh T, Ikeda K. The minimum alveolar concentration (MAC) of sevoflurane in humans. Anesthesiology 1987; 66: 301–3.PubMedCrossRefGoogle Scholar
  12. 12.
    Fink BR. Diffusion anoxia. Anesthesiology 1955; 16: 511–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Einarsson S, Stenqvist O, Bengtsson A, Houltz E, Bengtson JP. Nitrous oxide elimination and diffusion hypoxia during normo and hypoventilation. Br J Anaesth 1993; 71: 189–93.PubMedCrossRefGoogle Scholar
  14. 14.
    Nishino T, Kochi T. Effects of surgical stimulation on the apnoeic thresholds for carbon dioxide during anaesthesia with sevoflurane. Br J Anaesth 1994; 73: 583–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Einarsson S, Bengtsson A, Stenqvist O, Bengtson JP. Emergence from isoflurane/N2O or isoflurane anaesthesia. Acta Anaesthesiol Scand 1997; 41: 1292–9.PubMedGoogle Scholar
  16. 16.
    Einarsson S, Cerne A, Bengtsson A, Stenqvist O, Bengtson JP. Respiration during emergence from anaesthesia with desflurane/N2O vs. desflurane/air for gynaecologic laparoscopy. Acta Anaesthesiol Scand 1998; 42: 1192–8.PubMedGoogle Scholar
  17. 17.
    Brismar B, Hedenstierna G, Lundh R, Tokics L. Oxygen uptake, plasma catecholamines and cardiac output during neurolept-nitrous oxide and halothane anaesthesias. Acta Anaesthesiol Scand 1982; 26: 541–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Gregoretti S, Gelman S, Dimick A, Bradley EL Jr. Hemodynamic changes and oxygen consumption in burned patients during enflurane or isoflurane anesthesia. Anesth Analg 1989; 69: 431–6.PubMedCrossRefGoogle Scholar
  19. 19.
    Bengtson JP, Arnestad JP, Bengtsson J, Bengtsson A, Stenqvist O. Respiratory gas exchange during anaesthesia with enflurane or isoflurane in nitrous oxide with spontaneous and controlled ventilation. (German) Anaesthesist 1993; 42: 273–9.PubMedGoogle Scholar
  20. 20.
    Ciofolo MJ, Clergue F, Devilliers C, Ammar MB, Viars P. Changes in ventilation, oxygen uptake, and carbon dioxide output during recovery from isoflurane anesthesia. Anesthesiology 1989; 70: 737–41.PubMedGoogle Scholar
  21. 21.
    Kazama T, Ikeda K, Kato T, Kikura M. Carbon dioxide output in laparoscopic cholecystectomy. Br J Anaesth 1996; 76: 530–5.PubMedGoogle Scholar
  22. 22.
    Lockhart SH, Rampil IJ, Yasuda N, Eger EI II, Weiskopf RB. Depression of ventilation by desflurane in humans. Anesthesiology 1991; 74: 484–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Viale JP, Annat G, Bertrand O, Thouverez B, Hoen JP, Motin J. Continuous measurement of pulmonary gas exchange during general anaesthesia in man. Acta Anaesthesiol Scand 1988; 32: 691–7.PubMedGoogle Scholar
  24. 24.
    Landais A, Saint-Maurice C, Hamza J, Robichon J, McGee K. Sevoflurane elimination kinetics in children. Paediatr Anaesth 1995; 5: 297–301.PubMedCrossRefGoogle Scholar
  25. 25.
    Yasuda N, Targ AG, Eger EI II. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 1989; 69: 370–3.PubMedCrossRefGoogle Scholar
  26. 26.
    Siebeck R. Uber die Aufnahme von Stickoxydul in Blut. Skand Arch Physiol 1909; 21: 368–82.Google Scholar
  27. 27.
    Katoh T, Suguro Y, Ikeda T, Kazama T, Ikeda K. Influence of age on awakening concentrations of sevoflurane and isoflurane. Anesth Analg 1993; 76: 348–52.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1999

Authors and Affiliations

  • Sveinn Einarsson
    • 1
    • 2
  • Anders Bengtsson
    • 1
    • 2
    • 3
  • Ola Stenqvist
    • 1
    • 2
    • 4
  • Jan Peter Bengtson
    • 1
    • 2
    • 4
  1. 1.Departments of Anesthesia and Intensive CareReykjavik Hospital (University Teaching Hospital)ReykjavikIceland
  2. 2.Sahlgrenska University HospitalSahlgrenska
  3. 3.University of GöteborgSweden
  4. 4.Department of Anesthesiology and Intensive CareReykjavik HospitalReykjavikIceland

Personalised recommendations