Closure of persistently patent arterial duct and its impact on cerebral circulatory haemodynamics in children

Reports of Investigation



Closure of a patent arterial duct (PDA) is suggested as a risk factor associated with intraventricular haemorrhage and/or cerebral ischemia in neonates. This study evaluate the effects of transcatheter closure of a patent arterial duct in children on cerebral blood flow velocity.


Twelve children, aged from one to eight years were enrolled. Anaesthesia induction consisted of thiopentone, fentanyl and diazepam. Tracheal intubation was facilitated with vecuronium. Anaesthesia was maintained with N2O 70% in O2 and a PaCO2 between 35 to 40 mmHg. No cerebral vasoactive agents were used. Mean arterial pressure (MAP), central venous pressure (CVP), heart rate were continuously recorded. Systolic (Vs) and diastolic (Vd) cerebral blood flow velocity (CBFV) were recorded. Cerebral perfusion pressure (CPP) was calculated. The mean CBFV, the systolic-mean ratio and the cerebral blood volume were estimated from the area under the velocity-time curve (AUC) before PDA closure, immediately after and for 10 min following occlusion.


The mean (± SD) age and weight were 30 ± 22 mo and 13 ± 5 kg, respectively. Continuous recording during duct closure showed an abrupt increase in Vd (P < 0.05) whereas Vs remained constant. The AUC increased after closure and persisted for 10 min (P < 0.05).


This study confirms that closure of a PDA leads to acute changes in intracerebral diastolic flow and volume. This observation gives weight to mechanisms involved in IVH in smaller infants after arterial surgical duct closure. The anaesthetic technique used for arterial duct closure in these procedure could influence these observations.


Mean Arterial Pressure Central Venous Pressure Patent Ductus Arteriosus Cerebral Perfusion Pressure Cerebral Blood Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



La fermeture du canal artériel a été suggérée comme facteur de risque de l’hémorragie intraventriculaire et/ou de l’ischémie cérébrale chez les nouveau-nés. Cette étude évalue les effets sur la vélocité du flot cérébral de la fermeture par cathéter du canal artériel chez l’enfant.


Douze enfants, âgés de I à 8 ans ont été recrutés. Lanesthésie a été induite avec diazépam, fentanyl et thiopental, et l’intubation trachéale facilitée avec le vécuronium. L’anesthésie a été maintenue avec 70% de N2O dans l’O2 et la PaCO2 maintenue entre 35 et 40 mm de Hg. Aucun agent vasoactif cérébral n’a été utilisé. On a enregistré de façon continue la pression artérielle moyenne (PAM), la pression veineuse centrale (PVC) et la fréquence cardiaque (FC). On a aussi enregistré la vitesse du flot cérébral (CBFV) systolique (Vs) et diastolique (Vd). La pression de perfusion cérébrale (PPC) a été calculée. La CBFV moyenne, le rapport systolique-moyenne et le volume sanguin cérébral ont été estimés à partir de la surface sous la courbe vitesse-temps (AUC) avant la fermeture du canal artériel, immédiatement après et durant les 10 minutes qui ont suivi l’occlusion.


L’âge et le poids moyens (± Écart type) étaient respectivement de 30 ± 22 mois et de 13 ± 5 kg. Les enregistrements continus durant la fermeture du canal ont montré un accroissement subit de Vd (P< 0,05) alors que Vs est demeurée constante. L’AUC a augmentée après fermeture et cette augmentation a persisté pour 10 minutes (P< 0,05).


Cette étude confirme que la fermeture d’un canal artériel entraîne des changements aigus du flot diastolique cérébral ainsi que du volume sanguin cérébral. Cette observation tend à confirmer les mécanismes impliqués dans les hémorragies intraventriculaires chez les petits nourrissons après fermeture chirurgicale de canal artériel. La technique anesthésique utilisée lors des procédures au cours de cette étude peut avoir influencé les observations rapportées.


  1. 1.
    Hammerman C. Patent ductus arteriosus. Clinical relevance of prostaglandins and prostaglandin inhibitors in PDA pathophysiology and treatment. Clin Perinatol 1995; 22: 457–79.PubMedGoogle Scholar
  2. 2.
    Archer N. Patent ductus arteriosus in the newborn. Arch Dis Child 1993; 69: 529–32.PubMedGoogle Scholar
  3. 3.
    Perlman JM, Hill A, Volpe JJ. The effect of patent ductus arteriosus on flow velocity in the anterior cerebral arteries: ductal steal in the premature newborn infant. J Pediatr 1981; 99: 767–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Bejar R, Merritt TA, Coen RW, Mannino F, Gluck L. Pulsatility index, patent ductus arteriosus, and brain damage. Pediatrics 1982; 69: 818–22.PubMedGoogle Scholar
  5. 5.
    Martin CG, Snider AR, Katz SM, Peabody JL, Brady JP. Abnormal cerebral blood flow patterns in preterm infants with a large patent ductus arteriosus. J Pediatr 1982; 101: 587–93.PubMedCrossRefGoogle Scholar
  6. 6.
    Millar C, Bissonnette B. Awake intubation increases intracranial pressure without affecting cerebral blood flow velocity in infants. Can J Anaesth 1994; 41: 281–7.PubMedGoogle Scholar
  7. 7.
    Austin NC, Pairaudeau PW, Harnes TK, Hall MA. Regional cerebral blood flow velocity changes after indomethacin infusion in preterm infants. Arch Dis Child 1992; 67: 851–4.PubMedGoogle Scholar
  8. 8.
    Ando Y, Takashima S, Takeshita K. Postnatal changes of cerebral blood flow velocity in normal term neonates. Brain Dev 1983; 5: 525–8.PubMedGoogle Scholar
  9. 9.
    Mullaart RA, Hopman JCW, De Haan AFJ, Rotteveel JJ, Daniels O, Stoelinga GAB. Cerebral blood flow fluctuation in low-risk preterm newborns. Early Hum Dev 1992; 30: 41–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Dykes FD, Lazzara A, Ahmann P, Blumenstein B, Schwartz J, Brann AW. Intraventricular hemorrhage: a prospective evaluation of etiopathogenesis. Pediatrics 1980; 66: 42–9.PubMedGoogle Scholar
  11. 11.
    Szymonowicz W, Yu VYH. Periventricular haemorrhage: association with patent ductus arteriosus and its treatment with indomethacin or surgery. Aust Paediatr J 1986; 23: 21–5.Google Scholar
  12. 12.
    Hosking MCK, Benson LN, Musewe N, Dyck JD, Freedom RM. Transcatheter occlusion of the persistently patent ductus arteriosus. Forty-month follow-up and prevalence of residual shunting. Circulation 1991; 84: 2313–7.PubMedGoogle Scholar
  13. 13.
    Anonymous. Transcatheter occlusion of persistent arterial duct. Report of The European Registry. Lancet 1992; 340: 1062–6.Google Scholar
  14. 14.
    Saklad M. Grading of patients for surgical procedures. Anesthesiology 1941; 2: 281–4.CrossRefGoogle Scholar
  15. 15.
    Dyck JD, Benson LN, Smallhorn JF, McLaughlin PR, Freedom RM, Rowe RD. Catheter occlusion of the persistently patent ductus-arteriosus. Am J Cardiol 1988; 62: 1089–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57: 769–74.PubMedGoogle Scholar
  17. 17.
    Pilato MA, Bissonnette B, Lerman J. Transcranial Doppler: response of cerebral blood-flow velocity to carbon dioxide in anaesthetized children. Can J Anaesth 1991; 38: 37–42.PubMedCrossRefGoogle Scholar
  18. 18.
    Gillard JH, Kirkham FJ, Levin SD, Neville BGR, Gosling RG. Anatomical validation of middle cerebral artery position as identified by transcranial pulsed Doppler ultrasound. J Neurol Neurosurg Psychiatry 1986; 49: 1025–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Bissonnette B, Nebbia SP, Boross A. Transcranial Doppler probe wheel and track/bar fixation assembly. United States of America, #5,409,005, April 25,1995.Google Scholar
  20. 20.
    Bode H. Pediatric Applications of Transcranial Doppler Sonography. New York: Springer-Verlag Wien, 1988: 145.Google Scholar
  21. 21.
    Saliba EM, Chantepie A, Gold F, Marchand M, Pourcelot L, Laugier J. Intraoperative measurements of cerebral haemodynamics during ductus arteriosus ligation in preterm infants. Eur J Pediatr 1991; 150: 362–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Haworth SG, Bull C. Physiology of congenital heart disease. Arch Dis Child 1993; 68: 707–11.PubMedGoogle Scholar
  23. 23.
    Bissonnette B. Anesthesia for neurosurgical procedures.In: Gregory GA (Ed.). Pediatric Anesthesia, 3rd ed. New York: Churchill Livingstone, Inc, 1994: 375–421.Google Scholar
  24. 24.
    Planiel Th, Pourcelot L. Doppler effect study of the carotid circulation.In: Veryer M, White D, McCready V (Eds.). Ultrasonics in Medicine. New York: Excepta Medica, 1973: 104–11.Google Scholar
  25. 25.
    Lipman B, Serwer GA, Brazy JE. Abnormal cerebral hemodynamics in preterm infants with patent ductus arteriosus. Pediatrics 1982; 69: 778–81.PubMedGoogle Scholar
  26. 26.
    Lou HC, Lassen NA, Friis-Hansen B. Impaired autoregulation of cerebral blood flow in the distressed newborn infant. J Pediatr 1979; 94: 118–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Hernández MJ, Brennan RW, Bowman GS. Autoregulation of cerebral blood flow in the newborn dog. Brain Res 1980; 184: 199–202.PubMedCrossRefGoogle Scholar
  28. 28.
    Bissonnette B, Benson L. Does balloon dilatation angioplasty for coarctation of the aorta affect cerebrovascular circulation in children? Circulation 1991; 84: II-545.Google Scholar
  29. 29.
    Harper AM, Deshmukh VD, Rowan JO, Jennett WB. The influence of sympathetic nervous activity on cerebral blood flow. Arch Neurol 1972; 27: 1–6.PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1998

Authors and Affiliations

  1. 1.Department of Anaesthesia and the Variety Club Cardiac Catheterisation Laboratories, The Hospital for Sick ChildrenUniversity of Toronto, School of MedicineCanada
  2. 2.Department of Paediatrics, Division of Cardiology and the Variety Club Cardiac Catheterisation Laboratories, The Hospital for Sick ChildrenUniversity of Toronto, School of MedicineCanada

Personalised recommendations