Advertisement

Finite element galerkin solutions for the strongly damped extensible beam equations

  • S. M. Choo
  • S. K. Chung
  • R. Kannan
Article
  • 100 Downloads

Abstract

Finite element Galerkin solutions for the strongly damped extensible beam equations are considered. The semidiscrete scheme and a fully discrete time Galerkin method are studied and the corresponding stability and error estimates are obtained. Ratios of numerical convergence are given.

AMS Mathematics Subject Classification

65M12 65M60 

Key words and phrases

finite element method extensible beam equation stability error estimate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Avrin,Energy convergence results for strongly damped nonlinear wave equations, Math. Z.196(1987) 7–12.CrossRefMathSciNetGoogle Scholar
  2. 2.
    J.M. Ball,Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl.42 (1973) 61–90.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J.M. Ball,Stability theory for an extensible beam, J. Diff. Eq.14 (1973) 399–418.MATHCrossRefGoogle Scholar
  4. 4.
    S.M. Choo and S.K. Chung, L2-errorestimate for the strongly damped extensible beam equations, Appl. Math. Lett.11 (1998) 101–107.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S.M. Choo and S.K. Chung,Finite difference approximate solutions for the strongly damped extensible beam equations, Appl. Math. Comp.112(2000) 11–32.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R.W. Dickey,Free vibrations and dynamic buckling of the extensible beam, J. Math. Appl. Anal.29 (1970) 443–454.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R.W. Dickey,Stability theory for quasi-linear wave equations with linear damping, Proc. Royal Soc. Edinb.88A (1981) 25–41.MathSciNetGoogle Scholar
  8. 8.
    W.E. Fitzgibbon,Limiting behaviour of the strongly damped extensible beam equation, Diff. Integral Eq.3 (1990) 1067–1076.MATHMathSciNetGoogle Scholar
  9. 9.
    T. Geveci and I. Christie,The convergence of a Galerkin approximation scheme for an extensible beam, M2AN23 (1989) 597–613.MATHMathSciNetGoogle Scholar
  10. 10.
    G. Strang and G. Fix,An analysis of the finite element method, Prentice-Hall, Englewood Cliff, N.J. 1973.MATHGoogle Scholar
  11. 11.
    S. Woinowsky-Krieger,The effect of axial force on the vibration of hinged bars, J. Appl. Mech.17 (1950) 35–36.MATHMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2002

Authors and Affiliations

  • S. M. Choo
    • 1
  • S. K. Chung
    • 2
  • R. Kannan
    • 3
  1. 1.Department of MathematicsUlsan UniversityUlsanKorea
  2. 2.Department of Mathematics EducationSeoul National UniversitySeoulKorea
  3. 3.Department of MathematicsThe University of Texas at Arlington

Personalised recommendations