Canadian Journal of Anaesthesia

, Volume 44, Issue 9, pp 1014–1020 | Cite as

Impaired antioxidant defence in guinea pig heart tissues treated with halothane

  • I. Durak
  • O. Kurtipek
  • H. S. Öztürk
  • M. Birey
  • T. Güven
  • M. Kavutcu
  • M. Kaçmaz
  • B. Dikmen
  • M. Yel
  • O. Canbolat
Laboratory Investigations



To investigate the effects of halothane and halothane plus vitamin E treatment on myocardial free radical metabolism in guinea pigs.


Four groups of seven animals were studied; control, halothane, halothane plus vitamin E and vitamin E groups. In the halothane group, halothane 1.5% in oxygen was given for 90 min over three days. In the halothane plus vitamin E group, 300 rng · kg−1 · day−1 vitamin Eim was started three days before the first halothane treatment and continued for three days. Following sacrifice, the hearts were assayed for superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) and malondialdehyde (MDA) level was determined. Electron spin resonance (ESR) analysis and electron microscopy (EM) were also performed.


In the halothane group, SOD activities and MDA concentrations were increased compared with control and GSH-Px and CAT activities were decreased. In the halothane plus vitamin E group, there were no differences in enzyme activity compared with halothane alone but the MDA level was decreased. In the vitamin E group, enzyme activities were increased compared with control. Mainly the CF3CHCl radical was identified by ESR analysis in heart tissues exposed to halothane and the concentration of this radical was reduced by vitamin E. Electron microscopy showed cytoplasmic vacuolisation and dilation in sarcoplasmic reticulum in the heart tissues exposed to halothane: both were prevented by vitamin E.


Although halothane causes impairment in enzymatic antioxidant defence potential, due to lowered GSH-Px and CAT activity, and accelerates peroxidative reactions in the tissues affected, no subcellular damage occurred. Vitamin E may protect tissues against free radical attack by scavenging toxic free radicals formed in heart tissue during halothane anaesthesia.


Electron Spin Resonance Halothane Heart Tissue Halothane Anaesthesia Free Radical Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Étudier les effets de l’halothane et de l’association halothane-vitamine E sur la production myocardique de radicaux libres.


L’étude portait sur quatre groupes de sept animaux: contrôle, halothane, halothane+vitamine E, et vitamine E. Le groupe halothane a reçu de l’halothane 1,5% en oxygène pendant 90 min pour 3 jours. Le groupe halothane+vitamine E a reçu une doseim de 300 mg · kg−1 · j−1 de vitamine E pendant trois jours avant un premier traitement a l’halothane. Une fois l’animal sacrifié, la superoxyde dismutase (SOD), la glutathion peroxydase (GSH-Px) et catalase (CAT), et la malondialdéhyde (MDA) ont été titrées dans le tissu cardiaque. La résonance paramagnétique électronique (RPÉ) et la microscopie électronique ont complété ces analyses.


Dans le groupe halothane, l’activité de la SOD et la concentration de MDA augmentaient comparativement au contrôle et l’activité de la GSH-Px et de la CAT diminuait. Dans le groupe halothane+vitamine E, l’activité enzymatique ne changeait pas comparativement à l’halothane seul mais le niveau de MDA diminuait. Dans le groupe vitamine E, l’activité enzymatique augmentait comparativement au contrôle. Le radical CF3CHCl était principalement identifié par l’analyse RPÉ dans le tissu cardiaque exposé à l’halothane alors que la vitamine E diminuait la concentration de ce radical. La microscopie électronique révélait une vacuolisation et une dilatation cytoplasmiques du réticulum sarcoplasmique du tissu cardiaque exposé à l’halothane; la vitamine E prévenait ces effets.


Malgré l’altération par l’halothane de la capacité de protection enzymatique contre l’oxydation, due à la baisse de l’activité de la GSH-Px et de la CAT et l’accélération des réactions peroxydatives dans les tissus affectés, il n’y a pas eu de dommages infracellulaires. La vitamine E protège les tissus contre l’agression des radicaux libres en épurant les radicaux toxiques libérés dans le tissu cardiaque pendant l’anesthésie à l’halothane.


  1. 1.
    Menasché P, Piwnica A. Free radicals and myocardial protection: a surgical viewpoint. Ann Thorac Surg 1989; 47: 939–45.PubMedGoogle Scholar
  2. 2.
    Freeman BA, Crapo JD. Biology of disease. Free radicals and tissue injury. Lab Invest 1982; 47: 412–26.PubMedGoogle Scholar
  3. 3.
    Hammond B, Hess ML. The oxygen free radical system: potential mediator of myocardial injury. J Am Coll Cardiol 1985; 6: 215–20.PubMedGoogle Scholar
  4. 4.
    Werns SW, Shea MJ, Lucchesi BR. Free radicals and myocardial injury: pharmacologic implications. Circulation 1986; 74: 1–5.PubMedGoogle Scholar
  5. 5.
    Romaschin AD, Rebeyka I, Wilson GJ, Mickle DA. Conjugated dienes in ischemic and reperfused myocardium: an in vivo chemical signature of oxygen free radical mediated injury. J Mol Cell Cardiol 1987; 19: 289–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Del Nido PJ, Mickle DAG, Wilson GJ, et al. Evidence of myocardial free radical injury during elective repair of tetralogy of Fallot. Circulation 1987; 76: V174–9.PubMedGoogle Scholar
  7. 7.
    Julicher RHM, Tijburg LBM, Sterrenberg L, Bast A, Koomen JM, Noodhoek J. Decreased defense against free radicals in rat heart during normal reperfusion after hypoxic, ischemic and calcium-free perfusion. Life Sci 1984; 35: 1281–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Röth E, Török B, Zsoldos T, Matkovics B. Lipid peroxidation and scavenger mechanism in experimentally induced heart infarcts. Basic Res Cardiol 1985; 80: 530–6.PubMedCrossRefGoogle Scholar
  9. 9.
    Ferrari R, Ceconi C, Curello S, et al. Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol 1985; 17: 937–45.PubMedCrossRefGoogle Scholar
  10. 10.
    Gauduel Y, Duvelleroy MA. Role of oxygen radicals in cardiac injury due to reoxygenation. J Mol Cell Cardiol 1984; 16: 459–70.PubMedCrossRefGoogle Scholar
  11. 11.
    Lucchesi BR, Romson JL, Jolly SR. Do leucocytes influence infarct size?In: Hearse DJ, Yello DM. (Eds.). Therapeutic Approaches to Myocardial Infarct Size Limitation. New York: Raven Press, 1984: 219–48.Google Scholar
  12. 12.
    Nayler WG, Elz JS. Reperfusion injury: laboratory artifact or clinical dilemma? Circulation 1986; 74: 215–20.PubMedGoogle Scholar
  13. 13.
    Blake DW, Way D, Trigg L, Langton D, McGrath BP. Cardiovascular effects of volatile anesthesia in rabbits: influence of chronic heart failure and enalaprilat treatment. Anesth Analg 1991; 73: 441–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Tanguay M, Blaise G, Dumont L, Beique G, Hollmann C. Beneficial effects of volatile anesthetics on decrease in coronary flow and myocardial contractility induced by oxygen-derived free radicals in isolated rabbit hearts. J Cardiovasc Pharmacol 1991; 18: 863–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Gut J, Christsen U, Huwyler J. Mechanisms of halothane toxicity: novel insights. Pharmacol Ther 1993; 58: 133–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Kirshenbaum LA, Singal PK. Antioxidant changes in heart hypertropy: significance during hypoxia-reoxygenation injury. Can J Physiol Pharmacol 1992; 70: 1330–5.PubMedGoogle Scholar
  17. 17.
    Tanguay M, Blaise GA, Hollmann C, Amyot Y, Beique G, Meloche R. Halothane and isoflurane prevent free radical induced reduction in the coronary flow and contractility of the isolated rabbit-heart. Can J Anaesth 1990; 37: S147.PubMedCrossRefGoogle Scholar
  18. 18.
    Godin DV, Garnett ME. Effects of various anesthetic regimens on tissue antioxidant enzyme activities. Res Common Chem Pathol Pharmacol 1994; 83: 93–101.Google Scholar
  19. 19.
    Lowry O, Rosenbraugh N, Farr L, Rondall R. Protein measurement with the folin phenol reagent. J Biol Chem 1951; 183: 265–75.Google Scholar
  20. 20.
    Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutadthione peroxidase. J Lab Clin Med 1967; 70: 158–69.PubMedGoogle Scholar
  21. 21.
    Durak I, Canbolat O, Kavutçu M, Öztürk HS, Yurtarslani Z. Activities of total, cytoplasmic, and mitochondrial Superoxide dismutase enzymes in sera and pleural fluids from patients with lung cancer. J Clin Lab Anal 1996; 10: 17–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Aebi H. Catalase.In: Bergmeyer HU (Ed.). Methods of Enzymatic Analysis. New York and London: Academic Press Inc, 1974: 673.Google Scholar
  23. 23.
    Dahle LK, Hill EG, Holman RT. The thiobarbituric acid reaction and autooxidations of polyunsaturated fatty acid methyl esters. Arc Biochem Biophys 1962; 98: 253–61.CrossRefGoogle Scholar
  24. 24.
    Lontz RJ. Electron spin resonance analysis of a γ-irradiated single crystal of pentafluoropropionamide. Journal of Chemical Physics 1966; 45: 1339.CrossRefGoogle Scholar
  25. 25.
    Rogers MT, Kispert LD. Trifluoromethyl, and other radicals, in irradiated single crystals of trifluoroacetamide. Journal of Chemical Physics 1967; 46: 3193–9.CrossRefGoogle Scholar
  26. 26.
    Stock JGL, Strunin L. Unexplained hepatitis following halothane. Anesthesiology 1985; 63: 424–39.PubMedCrossRefGoogle Scholar
  27. 27.
    Kenna JG, Satoh H, Christ DD, Pohl LR. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther 1988; 245: 1103–9.PubMedGoogle Scholar
  28. 28.
    De Groot H, Noll T. Halothane hepatotoxicity: relation between metabolic activation, hypoxia, covalent binding, lipid peroxidation and liver cell damage. Hepatology 1983; 3: 601–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Durak I, Güven T, Birey M, et al. Halothane hepatotoxicity and hepatic free radical metabolism in guinea pigs; the effects of vitamin E. Can J Anaesth 1996; 43: 741–8.PubMedGoogle Scholar
  30. 30.
    Lind RC, Gandolfi AJ, Sipes IG, Brown BR Jr. Comparison of the requirements for hepatic injury with halothane and enflurane in rats. Anesth Analg 1985; 64: 955–63.PubMedCrossRefGoogle Scholar
  31. 31.
    Lind RC, Gandolfi AJ, Hall P de la M. The role of oxidative biotransformation of halothane in the guinea pig model of halothane-associated hepatotoxicity. Anesthesiology 1989; 70: 649–53.PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1997

Authors and Affiliations

  • I. Durak
    • 1
  • O. Kurtipek
    • 2
  • H. S. Öztürk
    • 1
  • M. Birey
    • 3
  • T. Güven
    • 3
  • M. Kavutcu
    • 1
  • M. Kaçmaz
    • 1
  • B. Dikmen
    • 2
  • M. Yel
    • 4
  • O. Canbolat
    • 1
  1. 1.Department of BiochemistryAnkara University Medical FacultyAnkara
  2. 2.Department of Anesthesiology ClinicsIbn-i Sina and Numune HospitalsAnkara
  3. 3.Department of Biology and Physics DepartmentsAnkara University Science FacultyAnkara
  4. 4.Biology DepartmentGazi University Education FacultyAnkara

Personalised recommendations