Canadian Journal of Anaesthesia

, Volume 43, Supplement 1, pp R61–R74 | Cite as

Trends in neuroanaesthesia

  • James E. Cottrell
Refresher Course Outline Track II


Although pharmacological cerebral protection and the prophylactic benefit of mild hypothermia are rapidly moving closer to clinical application, until they arrive, the best brain protection remains competent and careful application of established clinical care.


Mean Arterial Pressure Sevoflurane Nicardipine Thiopentone Nimodipine 

Les orientations de la neuroanesthésie


Bien que la neuroprotection pharmacologique et le bénéfice prophylactique de l’hypotension légère soient maintenant presque à notre portée, en attendant qu’ils nous parviennent, la meilleure neuroprotection demeure l’application rigoureuse et compétente des principes établis.


  1. 1.
    Lanier WL, Warner DO. Intracranial elastance versus intracranial compliance terminology should agree with that of other disciplines (Letter). Anesthesiology 1992; 77: 403–4.PubMedCrossRefGoogle Scholar
  2. 2.
    O’Sullivan MG, Statham PF, Jones PA, et al. Role of intracranial pressure monitoring in severely head-injured patients without signs of intracranial hypertension on initial computerized tomography. J Neurosurg 1994; 80: 46–50.PubMedGoogle Scholar
  3. 3.
    Eisenberg HM, Gary HE Jr.,Aldrich EF, et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg 1990; 73: 688–98.PubMedGoogle Scholar
  4. 4.
    Shiozaki T, Sugmimoto H, Taneda M, et al. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J Neurosurg 1993; 79: 363–8.PubMedGoogle Scholar
  5. 5.
    Marion DW, Obrist WE, Carlier PM, Penrod LE, Darby JM. The use of moderate therapeutic hypothermia for patients with severe head injuries: a preliminary report. J Neurosurg 1993; 79: 354–62PubMedGoogle Scholar
  6. 6.
    Jacobsen WK, Isaacs WB. Cerebral injury: are manipulations of carbon dioxide beneficial? J Neurosurg Anesthesiol 1993; 5: 59–61.PubMedGoogle Scholar
  7. 7.
    Patel PM. Hyperventilation as a therapeutic intervention: do the potential benefits outweigh the known risks? J Neurosurg Anesthesiol 1993; 5: 62–5.PubMedGoogle Scholar
  8. 8.
    Matta B, Lam AM, Mayberg TS. The influence of arterial oxygenation on cerebral venous oxygen saturation during hyperventilation. Can J Anaesth 1994; 41: 1041–6.PubMedGoogle Scholar
  9. 9.
    Prough DS. Perioperative fluid management:crystalloid, colloid and hypertonic solutions. ASA 45th Annual Refresher Course Lectures and Clinical Update Progr, 1994: #256. 1–7.Google Scholar
  10. 10.
    Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol 1992; 4: 4–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Ravussin P, Abou-Madi M, Archer D, et al. Changes in CSF pressure after mannitol in patients with and without elevated CSF pressure. J Neurosurg 1988; 69: 869–76.PubMedGoogle Scholar
  12. 12.
    Cottrell JE, Robustelli A, Post K, Turndorf H. Furosemide- and mannitol-induced changes in intracranial pressure and serium osmolality and electrolytes. Anesthesiology 1977; 47: 28–30.PubMedCrossRefGoogle Scholar
  13. 13.
    Schell RM, Cole DJ, Schultz RL, Osborne TN. Temporary cerebral ischemia. Effects of pentastarch or albumin on reperfusion injury. Anesthesiology 1992; 77: 86–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Goulin GD Duthie SE, Zornow MH, Scheller MS, Peterson BM. Global cerebral ischemia: effects of pentastarch after reperfusion. Anesth Analg 1994; 79: 1036–42.PubMedCrossRefGoogle Scholar
  15. 15.
    Bracken MB, Shepard MJ, Collins WF, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal injury. Results of the Second National Acute Spinal Cord Injury Study. N Eng J Med 1990; 322: 1405–11.Google Scholar
  16. 16.
    Bracken MB, Holford TR. Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg 1993; 79: 500–07.PubMedGoogle Scholar
  17. 17.
    Musch D. Tirilizad: quelle place lui donner?In: Ravussin P, Moeschler O, Boulard G. (Eds.). Detente et Protection Cerebrales. Lausanne: 16 Journees de Neuro-Aanesthesie-Reanimation, Livre du Congres, 1994.Google Scholar
  18. 18.
    Hartung T, Cottrell JE. Negative inferences about rare events require large samples (Letter). Anesthesiology 1993; 79: 1155–6.PubMedGoogle Scholar
  19. 19.
    Reinstrup P, Ryding E, Algotsson L, Bemtman L, Uski T. Effects of nitrous oxide on human regional cerebral blood flow and isolated pial arteries. Anesthesiology 1994; 81: 396–402.PubMedCrossRefGoogle Scholar
  20. 20.
    Lam AM, Mayberg TS, Eng CC, Cooper JO, Bachenberg KL, Mathisen TL. Nitrous oxide-isoflurane anesthesia causes more cerebral vasodilation than an equipotent dose of isoflurane in humans. Anesth Analg 1994; 78: 462–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Hartung J. Nitrous oxide: It’s enough to make you vomit (Letter). Anesthesiology 1993; 78: 403–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Hartung J, Cottrell JE. Nitrous oxide reduces thiopental-induced prolongation of survival in hypoxic and anoxic mice. Anesth Analg 1987; 66: 47–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Ravussin P, de Tribolet N, Wilder-Smith OH. Total intravenous anesthesia is best for neurological surgery. J Neurosurg Anesthesiol 1994; 6: 285–9.PubMedGoogle Scholar
  24. 24.
    Cho S, Fujigaki T, Nishiwaki Y, et al. Effects of sevoflurane with and without N2O on human cerebral blood flow velocity response to CO2. American Association of Anesthesia Abstracts 1994. Anesthesiology 1994 Sept; 81: #A134.CrossRefGoogle Scholar
  25. 25.
    Kitaguchi K, Ohsumi H, Kuro M, et al. Effects of sevoflurane on cerebral circulation and metabolism in patients with ischemic cerebrovascular disease. Anesthesiology 1993; 70: 704–9.CrossRefGoogle Scholar
  26. 26.
    Muzzi DA, Losasso T-Tl Dietz NM, Faust RJ, Cucchiara RF, Milde LN. The effect of desflurane and isoflurane on cerebrospinal fluid pressure in humans with supratentorial mass lesions. Anesthesiology 1992; 76: 720–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Ebert TJ, Muzzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. A comparison with isoflurane. Anesthesiology 1993; 79: 444–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Markovitz BP, Duhaime AC, Sutton L, Schreiner MS, Cohen DE. Effects of alfentanil on intracranial pressure in children undergoing ventriculoperitoneal shunt revision. Anesthesiology 1992; 76: 71–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Marx W, Shah N, Long C, et al. Sufentanyl, alfentanil, and fentanyl. Impact on cerebrospinal fluid pressure in patients with brain tumors. J Neurosurg Anesthesiol 1989; 1: 3–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Sperry RJ, Bailey PL, Reichman MV, Peterson JC, Peterson PB, Pace NL. Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology 1992; 77: 416–20.PubMedCrossRefGoogle Scholar
  31. 31.
    Kofke WA, Garman RH, Garman R, et al. Opioid neurotoxicity: fentanyl-induced exacerbation of forebrain ischemia in rats. J Neurosurg Anesthesiol 1994; 6: 323.Google Scholar
  32. 32.
    Nussmeier NA, et al. Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology 1986; 64: 165–70.PubMedGoogle Scholar
  33. 33.
    Todd MM, Hindman BT, Warner DS. Barbiturate protection and cardiac surgery: a different result (Editorial). Anesthesiology; 1991; 74: 402–5.PubMedCrossRefGoogle Scholar
  34. 34.
    Zaidan JR, Klochang A, Martin WM, Ziegler JS, Harless DM, Andrews RB. Effect of thiopental on neurologic outcome following coronary artery bypass grafting. Anesthesiology 1991; 74: 406–11.PubMedCrossRefGoogle Scholar
  35. 35.
    Artru AA, et al. Electroencephalogram, cerebral metabolic and vascular responses to propofol anesthesia in dogs. J. Neurosurg Anesthesiol 1992; 4: 99–109.PubMedCrossRefGoogle Scholar
  36. 36.
    Ramani R, et al. A dose-related study of the influence of propofol on cerebral blood flow, metabolism, and the electroencephalogram in the rabbit. J Neurosurg Anesthesiol 1992, 4; 110–9.PubMedCrossRefGoogle Scholar
  37. 37.
    Muzzi D, et al. The effect of propofol on cerebrospinal fluid pressure in patients with supratentorial mass lesions. Anesthesiology 1992; 77: A216.CrossRefGoogle Scholar
  38. 38.
    Fox J, Gelb AW, Enns J, Murkin JM, Farrar JK, Manninen PH. The responsiveness of cerebral blood flow to changes in arterial carbon dixoide is maintained during propofol-nitrous oxide anesthesia in humans. Anesthesiology 1992; 77: 453–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Eng C, Lam AM, Mayberg TS, Lee C, Mathisen T. The influence of propofol with and without nitrous oxide on cerebral blood velocity and CO2 reactivity in humans. Anesthesiology 1992; 77: 872–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Ravussin P, et al. Propofol vs. thiopental-isoflurane for neurosurgical anesthesia J Neurosurg Anesthesiol 1991; 3: 85–95.PubMedCrossRefGoogle Scholar
  41. 41.
    Ridenour TR, Warner DS, Todd MM, Gionet TX. Comparative effects of propofol and halothane on outcome from temporary middle cerebral artery occlusion in the rat. Anesthesiology 1992; 76: 807–12.PubMedCrossRefGoogle Scholar
  42. 42.
    Blouin RT, et al. Propofol depresses the hypoxic ventilatory response during conscious sedation and isohypercapnia sedation and isohypercapnia. Anesthesiology 1992; 77: 3A.CrossRefGoogle Scholar
  43. 43.
    Blouin RT, Conard PF, Gross JB. Time course of ventilatory depression following induction doses of propofol and thiopental. Anesthesiology 1991; 75: 940–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Milde LN, Weglinski MR. Pathophysiology of metabolic brain injury. In: Cottrell JC, Smith D, (Eds.). Anesthesia and Neurosurgery. St. Louis: CV Mosby, 1994, 59–92.Google Scholar
  45. 45.
    Robinson MJ, Teasdale GM. Calcium antagonists in the management of subarachnoid haemorrhage. Cerebrovasc Brain Metab Rev 1990; 2: 205–26.PubMedGoogle Scholar
  46. 46.
    Mercier P, Alhayek G, Rizk T, Fournier D, Menei P, Guy G. Are the calcium antagonists really useful in cerebral aneurysmal surgery? A retrospective study. Neurosurgery 1994; 34: 30–7.PubMedCrossRefGoogle Scholar
  47. 47.
    National Stroke Association Consensus. Stroke: The first six hours. Emergency evaluation and treatment. Stroke Clin Updates 1993; 4.Google Scholar
  48. 48.
    Amer Nimodipine Study Group. Clinical trial of nimodipine in acute ischemic stroke. Stroke 1992; 23: 3–8.Google Scholar
  49. 49.
    The European Study Group on Nimodipine in Severe Head Injury. A multicenter trial of the efficacy of nimodopine on outcome after severe head injury J. Neurosurg 1994: 80: 797–804.Google Scholar
  50. 50.
    Hadani M, Young W, Flamm ES. Nicardipine reduces calcium accumulation and electrolyte derangements in regional cerebral ischemia in rats. Stroke 1988; 19: 1125–32.PubMedGoogle Scholar
  51. 51.
    Kucharczyk T.Chew W, Derugin N, et al. Nicardipine reduces ischemic brain injury. Magnetic resonance imaging/spectroscopy study in cats. Stroke 1989; 20: 268–74.PubMedGoogle Scholar
  52. 52.
    Haley EC Jr, Kassell NF, Torner JC. A randomized trial of nicardipine in subarachnoid hemorrhage: angiographic and transcranial Doppler ultrasound results. J Neurosurg 1993; 78: 548–53.PubMedGoogle Scholar
  53. 53.
    Haley EC Jr, Kassell NF, Torner JC. A randomized controlled trial of high-dose intravenous nicardipine in aneurysmal subarachnoid hemorrhage. J Neurosurg 1993; 78: 537–47.PubMedCrossRefGoogle Scholar
  54. 54.
    Tsuda T, Togure K, Nishioka K, Watanabe T. Mg2+ administered up to twenty-four hours following reperfusion prevents ischemic damage of the Cal neutrons in the rat hippocampus. Neuroscience, 1991; 44: 335–41.PubMedCrossRefGoogle Scholar
  55. 55.
    Okawa M. Effects of magnesium sulfate on brain damage by complete global brain ischemia (Japanese). Masui 1992; 41: 341–55.PubMedGoogle Scholar
  56. 56.
    Schmitt HJ, Barth GR, Thierauf P. Neuronal protection by intraischemic brain perfusion: an electron microscopy study in the rat. J Neurosurg Anesthesiol 1994; 6: 265–74.PubMedGoogle Scholar
  57. 57.
    Simpson JI, Eide TR, Schiff GA, et al. Intrathecal magensium sulfate protects the spinal cord from ischemic injury during thoracic aortic cross-clamping. Anesthesiology 1994; 81: 1493–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Kass I, Cottrell JE, Chambers G. Magnesium and cobalt, not nimodipine, rpotect neurons against anoxic damage in the rate hippocampal slice. Anesthesiology 1988; 69: 710–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Cottrell JE, Hartung J, Giffin JP, et al. Intracranial and hemodynamic changes after succinylcholine administration in cats. Anesth Analg 1993; 62: 1006–9.Google Scholar
  60. 60.
    Lanier WL, Iaizzo PA, Milde JH. Cerebral function and muscle afferent activity following intravenous succinylcholine in dogs anesthetized with halothane: the effects of pretreatment with a defasciculating dose of pancuronium. Anesthesiology 1989; 71: 87–95.PubMedCrossRefGoogle Scholar
  61. 61.
    Minton MD, Grosslight K, Stirt JA, Bedford RF. Increases in intracranial pressure from succinylcholine: prevention by prior nondepolarizing blockade. Anesthesiology 1986; 65: 165–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Rosa G, San Filippo M, Orfeo P, et al. The effects of pipecuronium bromide on intracranial pressure and cerebral perfusion pressure. J Neurosurg Anesthesiol 1991; 3: 253–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Scheller MS, Zornow MH, Saidman LJ. Tracheal intubation without the use of muscle relaxants: a technique using propofol and varying doses of alfentanil. Anesth Analg 1992; 75: 788–93.PubMedCrossRefGoogle Scholar
  64. 64.
    Marshall WK, Bedford RF. Use of a pulmonary-artery catheter for detection and treatment of venous air embolism: a prospective study in man. Anesthesiology 1980; 52: 131–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Black S, Ockert DB, Oliver WC Jr, Cucchiara RF. Outcome following posterior fossa craniectomy in patients in the sitting or horizontal positions. Anesthesiology 1988; 69: 49–56.PubMedCrossRefGoogle Scholar
  66. 66.
    Bunegin L, Albin NS, Helsel PE, Hoffman A, Hung TK. Positioning the right atrial catheter: a model for reappraisal. Anesthesiology 1981; 55: 343–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Schwarz G, Fuchs G, Weihs W, Tritthart H, Schalk HV, Kaltenbock F. Sitting position for neurosurgery: experience with preoperative contrast echocardiography in 301 patients. J Neurosurg Anesthesiol 1994; 6: 83–8.PubMedGoogle Scholar
  68. 68.
    Skahen S, Shapiro HM, Drummond JC, Todd MM, Zelman V. Nitrous oxide withdrawal reduces intracranial pressure in the presence of pneumocephalus. Anesthesiology 1986; 65: 192–5.PubMedCrossRefGoogle Scholar
  69. 69.
    Wilder BL. Hypothesis: the etiology of midcervical quadriplegia after operation with the patient in the sitting position. Neurosurgery 1982; 11: 530–1.PubMedCrossRefGoogle Scholar
  70. 70.
    Muzzi DA, Black S, Losasso TJ, Cucchiara RF. Labetalol and esmolol in the control of hypertension after intracranial surgery. Anesth Analg 1990; 70: 68–71.PubMedGoogle Scholar
  71. 71.
    Bendo AA, Kozlowski PB, Capuano C, Cottrell JE, Mendeszoon MH. Cerebral edema formation in dogs following hypotension induced with isoflurane and labetalol. Acta Anaesthesiol Belg 1993; 44: 103–9.PubMedGoogle Scholar
  72. 72.
    Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia. J Cereb Blood Flow Metab 1994; 14: 217–26.PubMedGoogle Scholar
  73. 73.
    Cottrell TE, Hartung J. Induced Hypotension.In: Anesthesia and Neurosurgery, 3rd ed. St. Louis: C.V. Mosby, 1994: 425–34.Google Scholar

Copyright information

© Canadian Anesthesiologists 1996

Authors and Affiliations

  • James E. Cottrell
    • 1
  1. 1.Department of Anesthesiology, College of MedicineState University of New York Health Science Center at BrooklynBrooklyn

Personalised recommendations