Advertisement

Symmetric quadrature formulas over a unit disk

  • KyoungJoong Kim
  • ManSuk Song
Article
  • 166 Downloads

Abstract

An algorithm to get an optimal choice for the number of symmetric quadrature points is given to find symmetric quadrature formulas over a unit disk with a minimal number of points even when a high degree of polynomial precision is required. The symmetric quadrature formulas for numerical integration over a unit disk of complete polynomial functions up to degree 19 are presented.

AMS Mathematics Subject Classification

65D30 41A55 

Key words and phrases

Symmetric quadrature formulas integration formulas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.A.Dunavant,Economical symmetrical quadrature rules for complete polynomials over a square domain, Int.J.Numer.Methods eng.21 (1985), 1777–1784.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    K.Gatermann,The Construction of symmetric cubature formulas for the square and the triangle, Computing40 (1988), 229–240.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    P.C.Hammer, O.J.Marlowe and A.H.Stroud,Numerical integration over simplexes and cones, MTAC10 (1956), 130–137.MATHMathSciNetGoogle Scholar
  4. 4.
    P.C.Hammer and A.H.Stroud,Numerical evaluation of multiple integrals II, MTAC12 (1958), 272–280.MATHMathSciNetGoogle Scholar
  5. 5.
    International Mathematical and Statistical Libraries,version 2.0, Visual Numerics Inc., Houston,Texas, 1991.Google Scholar
  6. 6.
    M.E.Laursen and M.Gellert,Some criteria for numerically integrated matrices and quadrature formulas for triangles, Int. J.Numer.Methods Eng.12 (1978), 67–76.MATHCrossRefGoogle Scholar
  7. 7.
    J.N.Lyness and D.Jespersen,Moderate degree symmetric quadrature rules for the triangle, Inst.Maths.Applies.15 (1975), 19–32.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mathematica,enhanced version 2.2, Wolfram Research,Inc., 1993.Google Scholar
  9. 9.
    Microsoft Fortran Powerstation,Professional Edition, version 4.0, Microsoft Corporation, 1995.Google Scholar
  10. 10.
    P.Rabinowitz and N.Richter,Perfectly symmetric two dimensional integration formulas with minimal number of points, Math. Comp.23 (1969), 765–779.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 1997

Authors and Affiliations

  1. 1.Department of MathematicsYonsei UniversitySeoulKorea
  2. 2.Department of Computer SciencesYonsei UniversitySeoulKorea

Personalised recommendations