, Volume 65, Issue 4, pp 663–679 | Cite as

Processing, properties and some novel applications of magnetic nanoparticles

  • D. Bahadur
  • J. Giri
  • Bibhuti B. Nayak
  • T. Sriharsha
  • P. Pradhan
  • N. K. Prasad
  • K. C. Barick
  • R. D. Ambashta


Magnetic nanoparticles have been prepared by various soft chemical methods including self-assembly. The bare or surface-modified particles find applications in areas such as hyperthermia treatment of cancer and magnetic field-assisted radioactive chemical separation. We present here some of the salient features of processing of nanostructured magnetic materials of different sizes and shapes, their properties and some possible applications. The materials studied included metals, metal-ceramic composites, and ferrites.


Magnetic nanoparticles magnetic nanocomposite self-assembly hyperthermia biocompatibility 


75.50 81.07.Wx 81.16.Dn 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D Bahadur and J Giri,Sadhana 28, 639 (2003)CrossRefGoogle Scholar
  2. [2]
    I Willner and B Willner,Pure Appl. Chem. 74, 1773 (2002)CrossRefGoogle Scholar
  3. [3]
    J E Sundeen and R C Buchanan,Sens. and Actuators A63, 33 (1997)CrossRefGoogle Scholar
  4. [4]
    V Skumryev, S Stoyanov, Y Zhang, G Hadjipanayis, D Givord and J Nogues,Nature (London) 423, 850 (2003)CrossRefADSGoogle Scholar
  5. [5]
    X-C Sun and X-L Dong,Mater. Res. Bull. 37, 991 (2002)CrossRefGoogle Scholar
  6. [6]
    J Giri, T Sriharsha and D Bahadur,J. Mater. Chem. 14, 875 (2004)CrossRefGoogle Scholar
  7. [7]
    J Giri, S G Thakurta, J Bellare, A K Nigam and D Bahadur,J. Magn. Magn. Mater. 293, 62 (2005)CrossRefADSGoogle Scholar
  8. [8]
    Q Chen, A J Rondinone, B C Chakoumakos and Z J Zhang,J. Magn. Magn. Mater. 194, 1 (1999)CrossRefADSGoogle Scholar
  9. [9]
    R Vijayakumar, Y Koltypin, I Felner and A Gedanken,Mater. Sci. Eng. A286, 101 (2000)Google Scholar
  10. [10]
    D Makovec, A Košak, A Žnidaršič and M Drofenik,J. Magn. Magn. Mater. 289, 32 (2005)CrossRefADSGoogle Scholar
  11. [11]
    Y Xia, B Gates, Y Yin and Y Lu,Adv. Mater. 12, 693 (2000)CrossRefGoogle Scholar
  12. [12]
    J D Jonnaopoulos, R D Meade and J N Winn,Photonic crystals (Princeton University Press, NJ, 1995)Google Scholar
  13. [13]
    M Inoue, K I Arai, T Fujii and M Abe,J. Appl. Phys. 85, 5768 (1999)CrossRefADSGoogle Scholar
  14. [14]
    A A Fedyanin, T Yoshida, K Nashimura, G Marowsky, M Inoue and O A Aktsipetrov,J. Magn. Magn. Mater. 258, 96 (2003)CrossRefADSGoogle Scholar
  15. [15]
    M K Beklemishev and C M Wai, Liquid extraction, new extraction agents — crown ether extractants, in:Separation technology in nuclear waste management edited by T E Carleson, N Chapman and C M Wai (CRC Press, Boca Raton, FL, 1995) pp. 47–67Google Scholar
  16. [16]
    R-S Juang,Proc. Natl. Sci. Counc. ROC (A) 23, 353 (1999)Google Scholar
  17. [17]
    L Nunez and M D Kaminski,J. Magn. Magn. Mater. 194, 102 (1994)CrossRefADSGoogle Scholar
  18. [18]
    R D Ambashta, P K Wattal, S Singh and D Bahadur,J. Magn. Magn. Mater. 267, 335 (2003)CrossRefADSGoogle Scholar
  19. [19]
    R D Ambashta, S M Yusuf, M D Mukadam, S Singh, P K Wattal and D Bahadur,J. Magn. Magn. Mater. 293, 8 (2005)CrossRefADSGoogle Scholar
  20. [20]
    E P Horwitz and R Chiarizia, Liquid extraction, the true process — experimental studies, in:Separation techniques in nuclear waste management edited by T E Carleson, N Chapman and C M Wai (CRC Press, Boca Raton, FL, 1996) pp. 3–33Google Scholar
  21. [21]
    J Giri, A Ray, S Dasgupta, D Datta and D Bahadur,Bio-med Mater. and Eng. 13, 387 (2003)Google Scholar
  22. [22]
    F Grasset, S Mornet, A Demourgues, J Portier, J Bonnet, A Vekris and E Duguet,J. Magn. Magn. Mater. 234, 409 (2001)CrossRefADSGoogle Scholar
  23. [23]
    A Petri-Fink, M Chastellain, L Juillerat-Jeanneret, A Ferrari and H Hofmann,Biomaterials 26, 2685 (2005)CrossRefGoogle Scholar
  24. [24]
    A Jordan, P Wust, R Scholz, B Tesche, H Fahling, T Mitrovics, T Vogl, J Cervos-Navarro and R Felix,Int. J. Hyperthmia 12, 705 (1996)CrossRefGoogle Scholar
  25. [25]
    L M Lacava, V A P Garcia, S Kückelhaus, R B Azevedo, N Sadeghiani, N Buske, P C Morais and Z G M Lacava,J. Magn. Magn. Mater. 272, 2434 (2004)CrossRefADSGoogle Scholar
  26. [26]
    N K Prasad, D Panda, S Singh, M D Mukadam, S M Yusuf and D Bahadur,J. Appl. Phys. 97, 10Q903 (2005)CrossRefGoogle Scholar
  27. [27]
    J Giri, P Pradhan, T Sriharsha and D Bahadur,J. Appl. Phys. 97, 10Q916 (2005)CrossRefGoogle Scholar
  28. [28]
    Bibhuti B Nayak, Satish Vitta, Arun K Nigam and D Bahadur,IEEE Trans. Magn. 41 (2005) (in press)Google Scholar
  29. [29]
    W Stöber, A Fink and E Bohn,J. Coll. Inter. Sci. 26, 62 (1968)CrossRefGoogle Scholar
  30. [30]
    K Nashimura, A V Baryshev, T Kodama, H Uchida and M Inoue,J. Appl. Phys. 95, 6633 (2004)CrossRefADSGoogle Scholar
  31. [31]
    K Gupta, J Bishop, A Peck, J Brown, L Wilson and D Panda,Biochemistry 43, 6645 (2004)CrossRefGoogle Scholar
  32. [32]
    A Jordan, R Scholz, P Wust, H Schirra, T Schiestel, H Schmidt and R Felix,J. Magn. Magn. Mater. 194, 185 (1999)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2005

Authors and Affiliations

  • D. Bahadur
    • 1
  • J. Giri
    • 1
  • Bibhuti B. Nayak
    • 1
  • T. Sriharsha
    • 1
  • P. Pradhan
    • 2
  • N. K. Prasad
    • 1
  • K. C. Barick
    • 1
  • R. D. Ambashta
    • 3
  1. 1.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology-BombayMumbaiIndia
  2. 2.School of Biosciences and BioengineeringIndian Institute of Technology-BombayMumbaiIndia
  3. 3.Back-End Technology Development DivisionBhabha Atomic Research Centre, TrombayMumbaiIndia

Personalised recommendations