Advertisement

A local-global stepsize control for multistep methods applied to semi-explicit index 1 differential-algebraic equations

  • G. Yu. Kulikov
  • S. K. Shindin
Article
  • 49 Downloads

Abstract

In this paper we develop a new procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of multistep formulas. As a result, such methods with the local-global stepsize control solve differential-algebraic equations with any prescribed accuracy (up to round-off errors).

For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approximations to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the theoretical results of the paper.

AMS Mathematics Subject Classification

65L06 

Key word and phrases

differential-algebraic equations multistep methods local and global errors estimates error control mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Arévalo, G. Söderlind,Convergence of multistep discretizations of DAEs, BIT,35 (1995), 143–168.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    E. Eich, C. Führer, J. Yen,On the error control for multistep methods applied to ODEs with invariants and DAEs in multibody dynamics, Mech. Struct. and Mach.,23(2) (1995), 159–179.CrossRefGoogle Scholar
  3. 3.
    C.W. Gear, K.W. Tu,The effects of variable mesh size on the stability of multistep methods, SIAM J. Numer. Anal.11 (1974), 1025–1043.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    C.W. Gear, D.S. Watanabe,Stability and convergence of variable order multistep methods, SIAM J. Numer. Anal.11 (1974), 1044–1058.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    C.W. Gear, L.R. Petzold,ODE methods for the solution of differential/algebraic systems, SIAM J. Numer. Anal.21 (1984), 716–728.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R.D. Grigorieff,Stability of multistep methods on variable grids, Numer. Math.42 (1983), 359–377.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    E. Hairer, S.P. Nørsett, G. Wanner,Solving ordinary differential equations I: Nonstiff problems, Springer-Verlag, Berlin, 1987, 1993.zbMATHGoogle Scholar
  8. 8.
    E. Hairer, Ch. Lubich, M. Roche,The numerical solution of differential-algebraic systems by Runge-Kutta methods, Lecture Note in Math. 1409, Springer-Verlag, Berlin, 1989.zbMATHGoogle Scholar
  9. 9.
    E. Hairer, G. Wanner,Solving ordinary differential equations II: Stiff and differentialalgebraic problems, Springer-Verlag, Berlin, 1991.Google Scholar
  10. 10.
    K.R. Jackson, A. Kværnø, S.P. Nørsett,The use of Butcher series in the analysis of Newton-like iterations in Runge-Kutta formulas, Applied Numerical Mathematics,15 (1994), 341–356.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G.Yu. Kulikov,A method for the numerical solution of the autonomous Cauchy problem with an algebraic restriction of the phase variables, (in Russian) Vestn. MGU Ser. 1 Mat. Mekh., (1992), No. 1, 14–19;translation in Moscow Univ. Math. Bull.47 (1992), No. 1, 14–18.Google Scholar
  12. 12.
    G.Yu. Kulikov,The numerical solution of an autonomous Cauchy problem with an algebraic constraint on the phase variables (the nonsingular case), (in Russian) Vestn. MGU Ser. 1 Mat. Mekh., (1993), No. 3, 6–10;translation in Moscow Univ. Math. Bull.48 (1993), No. 3, 8–12.Google Scholar
  13. 13.
    G.Yu. Kulikov,The numerical solution of the autonomous Cauchy problem with an algebraic relation between the phase variables, (in Russian) Zh. Vychisl. Mat. Mat. Fiz.33 (1993), No. 4, 522–540;translation in Comp. Maths Math. Phys.33 (1993), No. 4, 477–492.zbMATHMathSciNetGoogle Scholar
  14. 14.
    G.Yu. Kulikov,The numerical solution of the Cauchy problem with algebraic constrains on the phase variables (with applications in medical cybernetics), Dissertation of Candidate of Sciences in Mathematics, Computing Center of Russian Academy of Sciences, Moscow, 1994.Google Scholar
  15. 15.
    G.Yu. Kulikov, P.G. Thomsen,Convergence and implementation of implicit RungeKutta methods for DAEs, Technical report 7/1996, IMM, Technical University of Denmark, Lyngby, 1996.Google Scholar
  16. 16.
    G.Yu. Kulikov,Convergence theorems for iterative Runge-Kutta methods with a constant integration step, (in Russian) Zh. Vychisl. Mat. Mat. Fiz.36 (1996), No. 8, 73–89;translation in Comp. Maths Math. Phys.36 (1996), No. 8, 1041–1054.MathSciNetGoogle Scholar
  17. 17.
    G.Yu. Kulikov,Numerical methods solving the semi-explicit differential-algebraic equations by implicit multistep fixed stepsize methods, Korean J. Comput. & Appl. Math.4 (1997), No. 2, 281–318.zbMATHMathSciNetGoogle Scholar
  18. 18.
    G.Yu. Kulikov,Stable local-global stepsize control for Runge-Kutta methods, preprint numerics No. 3/1997, Mathematical Sciences Div., Norwegian University of Science and Technology, Trondheim, 1997.Google Scholar
  19. 19.
    G.Yu. Kulikov,Numerical solution of the Cauchy problem for a system of differentialalgebraic equations with the use of implicit Runge-Kutta methods with nontrivial predictor, (in Russian) Zh. Vychisl. Mat. Mat. Fiz.38 (1998), No. 1, 68–84;translation in Comp. Maths Math. Phys.38 (1998), No. 1, 64–80.MathSciNetGoogle Scholar
  20. 20.
    A. Kværnø,The order of Runge-Kutta methods applied to semi-explicit DAEs of index 1, using Newton-type iterations to compute the internal stage values, Technical report 2/1992, Mathematical Sciences Div., Norwegian Institute of Technology, Trondheim, 1992.Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 1999

Authors and Affiliations

  • G. Yu. Kulikov
    • 1
  • S. K. Shindin
    • 1
  1. 1.Department of Mathematics and MechanicsUlyanovsk State UniversityUlyanovskRussia

Personalised recommendations