A priori error estimates for the finite element approximation of an obstacle problem

  • Cheon Seoung Ryoo


The purpose of this paper is to measure, with explicit constants as small as possible, a priori error bounds for approximation by picewise polynomials. These constants play an important role in the numerical verification method of solutions for obstacle problems by using finite element methods.

AMS Mathematics Subject Classification

65N15 65N30 

Key word and phrases

Numerical verification error estimates obstacle problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.Glowinski,Numerical Methods for Nonlinear Variational Problems, Springer, New York, (1984).MATHGoogle Scholar
  2. 2.
    M.T.Nakao,A numerical verification method for the existence of weak solutions for nonlinear boundary value problems, Journal of Math. Analysis and Applications 164(1992), 489–507.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M.T.Nakao, N.Yamamoto and S. Kimura,On best constant in the optimal error estimates for the H0/1-projection into piecewise polynomial spaces, to appear in J.Approximation Theory.Google Scholar
  4. 4.
    M.T.Nakao, S.H.Lee and C.S.Ryoo,Numerical verification of solutions for elastoplastic torsion problems, to appear in Computers and Mathematics with Applications.Google Scholar
  5. 5.
    M. Plum,Explicit H 2 -estimates and pointwise bounds for solutions of second order elliptic boundary value problems, Journal of Mathematical Analysis and Applications 165(1992), 36–61.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Plum,Computer-Assister Existence Proofs for Two-Point Boundary Value Problems, Computing 46(1991), 19–34.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    C.S.Ryoo,A computational verification method of solution with uniqueness for obstacle problems, Bulletin of Informatics and Cybernetics 30(1998), 133–144.MATHMathSciNetGoogle Scholar
  8. 8.
    C.S.Ryoo and M.T.Nakao,Numerical verification of solutions for variational inequalities, Numerische Mathematik 81(1998), 305–320.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    M.H Schultz,Spline Analysis, Prentice-Hall, London(1973).MATHGoogle Scholar
  10. 10.
    N.Yamamoto,A numerical verification method for solutions of boundary value problems with local uniqueness by Banach’s fixed point theorem, to appear in SIAM J. Numer. Anal.Google Scholar
  11. 11.
    N. Yamamoto and M.T. Nakao,Numerical verifications of solutions for elliptic equations in nonconvex polygonal domains, Numerische Mathematik 65(1993), 503–521.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 2000

Authors and Affiliations

  • Cheon Seoung Ryoo
    • 1
  1. 1.Department of MathematicsKyungpook National UniversityTaeguKorea

Personalised recommendations