Advertisement

A numerical method for solving the Fredholm integral equation of the second kind

  • M. A. Abdou
  • S. A. Mahmoud
  • M. A. Darwish
Article
  • 144 Downloads

Abstract

The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernels using the Toeplitz matrices. The solution has a computing time requirement ofO(N 2), where 2N + 1 is the number of discretization points used. Also, the error estimate is computed. Some numerical examples are computed using the MathCad package.

AMS Mathematics Subject Classification

45B05 45D05 

Key word and phrases

Fredholm integral equation singular integral operator Toeplitz matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. V. Kovalenko,Some Approximate Methods of Solving Integral Equations of Mixed Problems, PMM, Vol. 53, (1989).Google Scholar
  2. 2.
    E. K. Atkinson,A Survey of Numerical Method for the Solution of Fredholm Integral Equation of the Second Kind, SIAM, Philadelphia, (1976).Google Scholar
  3. 3.
    G. Ya. Popov,Contact Problems for a Linearly Deformable Base, Kiev, Odessa, (1982).Google Scholar
  4. 4.
    L. M. Delves,A Fast Method for the Solution of Fredholm Integral Equation, Inst. Maths. Applics, Vol. 20 (1977), 173–182.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    L. M. Delves and J. L. Mohamed,Computional Methods for Integral Equations, New York, (1985).Google Scholar
  6. 6.
    M. A. Abdou,Fredholm Integral Equation of the Second Kind with Potential Kernel, J. Comp. and Appl. Math., Vol. 72, (1996), 161–167.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    S. M. Mkhitarian and M. A. Abdou,On Different Methods for Solving the Fredholm Integral Equation of the First Kind with Karlman Kernel, Dakl. Acad, Nauk. Armenia, Vol 89, (1989), 125–130.Google Scholar
  8. 8.
    S. M. Mkhitarian and M. A. Abdou,On Different Methods for Solving the Fredholm Integral Equation of the First Kind with Logarithmic Kernel, Dakl. Acad, Nauk. Armenia, Vol. 90, (1989), 1–10.Google Scholar
  9. 9.
    V. M. Aleksandov and E. V. Kovalenko,Problems in Mechanics Media with Mixed Boundary Conditions, Nauk, Moscow, (1986).Google Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 1998

Authors and Affiliations

  • M. A. Abdou
    • 1
  • S. A. Mahmoud
    • 1
  • M. A. Darwish
    • 2
  1. 1.Faculty of EducationAlexandria UniversityAlexandriaEgypt
  2. 2.Faculty of EducationAlexandria University Damanhour branchEgypt

Personalised recommendations