Advertisement

Nonlinear behavior of a galloping cable

  • Hyeyoung Oh
Article
  • 39 Downloads

Abstract

This paper presents the numerical experiment of a discretized loaded cable with periodic forcing. There appeared to be various type of nonlinear oscillations over a wide range of frequencies and amplitudes for the periodic forcing term. The same forcing term can give rise to large or small oscillation by solving initial value problem and observing the solutions after a long time.

AMS Mathematics Subject Classification

35A40 35B15 35G25 

References

  1. 1.
    O.H. Amann, T. von Karman and G.B. Woodruff,The failure of the Tacoma Narrows Bridge, Federal Works Agency, Washington, DC(1941).Google Scholar
  2. 2.
    S.S. Antman,The equations for large vibrations of strings, Amer. Math. Monthly, 87(1980), 359–370MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G.F. Carrier,On the nonlinear vibration problem of the elastic string, Quart. Appl. Math., 3(1945), 157–165.MATHMathSciNetGoogle Scholar
  4. 4.
    Y.S. Choi, Hyeyoung Oh Her, and P.J. McKenna,Galloping: nonlinear oscillation in a periodically forced loaded hanging cable, J. Computational and Applied Math., 52(1994), 23–34.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R.W. Dickey,The nonlinear string under a vertical force, SIAM J. Appl. Math., 17(1969), 172–178.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. Glover, A. C. Lazer, and P.J. McKenna,Existence of Stability of Large Scale Nonlinar Oscillations in Suspension Bridges, Journal of Applied Mathematics and Physics (ZAMP), 40(1989), 172–200.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    H.O. Her,Multiple periodic solutions in a hanging cable with periodic forcing, Ph.D. thesis, University of Connecticut, 1991.Google Scholar
  8. 8.
    H.M. Irvine,Cable structure, MIT Press (1981).Google Scholar
  9. 9.
    K.C. Jen,Numerical Investigation of Periodic Solutions for a Suspension Bridge Model, University of Connecticut, 1990.Google Scholar
  10. 10.
    U. Schmidt and H. J. Weinitschke,Some static problems for the nonlinear elastic string, J. Engrg. Math., 17(1983), 149–189.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Korean Society for Computational and Applied Mathematics 1996

Authors and Affiliations

  • Hyeyoung Oh
    • 1
  1. 1.Department of Computer ScienceJunior College of IncheonIncheonKorea

Personalised recommendations