Canadian Journal of Anaesthesia

, Volume 38, Supplement 1, pp R105–R125 | Cite as

Anaesthesia for the neonate

  • Robert K. Crone
  • Gregory K. Sorensen
  • Rosemary J. Orr
Referesher Course Outline Track II


Halothane Preterm Infant Periodic Breathing Persistent Pulmonary Hypertension Extra Corporeal Membrane Oxygenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Anesthésie chez le nouveau-né


  1. 1.
    Rudolph AM. The changes in the circulation after birth: their importance in congenital heart disease. Circulation 1970; 41: 343–59.PubMedGoogle Scholar
  2. 2.
    Rudolph AM. The fetal circulation.In: Congenital Disease of the Heart. Chicago: Year Book Medical Publishers 1974; 1–9.Google Scholar
  3. 3.
    Rudolph AM. Changes in the circulation after birth.In: Congenital Disease of the Heart. Chicago: Year Book Medical Publishers 1974; 1–9.Google Scholar
  4. 4.
    Fox WW, Duraras S. Persistent pulmonary hypertension in the neonate. Diagnosis and management. J Pediatr 1983; 103: 505–14.PubMedCrossRefGoogle Scholar
  5. 5.
    Peckham CJ, Fox WW. Physiologic factors affecting pulmonary artery pressure in infants with persistent pulmonary hypertension. J Pediatr 1978; 93: 1005–10.PubMedCrossRefGoogle Scholar
  6. 6.
    O’Rourke PP, Crone RK, Vacanti JP et al. A prospective randomized study of extracorporeal membrane oxygenation (ECMO) and conventional medical therapy in nconates with persistent pulmonary hypertension of the newborn. Pediatrics 1989; 84: 957–63.PubMedGoogle Scholar
  7. 7.
    Hickey PR, Hansen DD, Wessel DL et al. Pulmonary and systemic hemodynamic responses to fentanyl in infants. Anesth Analg 1985; 64: 483–6.PubMedGoogle Scholar
  8. 8.
    Anand KJS, Hickey PR. Pain and its effects in the human neonatc and fetus. N Engl J Med 1987; 317: 1321–9.PubMedGoogle Scholar
  9. 9.
    Friedman WF. The intrinsic properties of the developing heart. Prog Cardiovasc Dis 1972; 15: 87–111.PubMedCrossRefGoogle Scholar
  10. 10.
    Kirkpatrick SE, Pitlick PT, Naliboff R, Friedman WF. Frank-Starling as an important determinant of fetal cardiac output. Am J Physiol 1976; 231: 495–500.PubMedGoogle Scholar
  11. 11.
    Lerman J, Robinson S, Willis MM, Gregory GA. Anesthetic requirements for halothane in young children 0–1 months and 1–6 months of age. Anesthesiology 1983; 59: 421–4.PubMedGoogle Scholar
  12. 12.
    Gregory GA. The baroresponses of preterm infants during halothane anesthesia. Can Anaesth Soc J 1982; 29: 105–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Friesen RH, Lichtor JL. Cardiovascular depression during halothane anesthesia in infants: a study of three induction techniques. Anesth Analg 1982; 61: 42–5.PubMedGoogle Scholar
  14. 14.
    Friedman WF, Pool PE, Jacobowitz D et al. Sympathetic innervation of the developing rabbit heart: biochemical and histochemical comparison of fetal, neonatal and adult myocardium. Circ Res 1968; 23: 25–32.PubMedGoogle Scholar
  15. 15.
    Liebowitz EA, Novich JS, Rudolph AM. Development of myocardial sympathetic innervation in the fetal lamb. Pediatr Res 1972; 6: 887–93.Google Scholar
  16. 16.
    Gennser G, Studnitz WV. Noradrenalinc synthesis in human fetal heart. Experentia 1975; 31: 1422–4.CrossRefGoogle Scholar
  17. 17.
    Schifferli PY, Caldero-Barcia B. Effects of atropine and beta adrenergic agents on heart rate of the human fetus.In: Barens L (Ed.). Fetal Pharmacology. New York: Raven Press 1973; 259–79.Google Scholar
  18. 18.
    Waldman S, Krauss AN, Auld PAM. Baroreceptors in preterm infants: their relationship to maturity and disease. Devel Med Child Neurol 1979; 21: 714–22.Google Scholar
  19. 19.
    Daly M deB, Angell-James JE, Elsner R. Role of the carotid-body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet 1979; 1: 764–7.PubMedGoogle Scholar
  20. 20.
    Enhorning G, Westin B. Experimental studies of the human fetus in prolonged asphyxia. Acta Physiol Scand 1954; 31: 359–75.PubMedCrossRefGoogle Scholar
  21. 21.
    Mott JC. The ability of young animals to withstand total oxygen lack. Br Med Bull 1961; 17: 145–8.Google Scholar
  22. 22.
    Penefsy LJ. Perinatal development of cardiac contractile mechanisms.In; Gootman N, Gootman P (Eds.). Perinatal Cardiovascular Function. New York: Maricl Dekker 1983; 109–200.Google Scholar
  23. 23.
    Cross KW, Dawes GS, Mou JC. Anoxia, oxygen consumption and cardiac output in newborn lambs and adult sheep. J Physiol (Lond) 1959; 146: 316–43.Google Scholar
  24. 24.
    Hershenson MB, O’Rourke PP, Crone RK. Effects of halothane on critical levels of oxygen transport in the anesthetized newborn lamb. Anesthesiology 1987; 67: 174–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Rigatto H, Brady J, de la Toree Verdizco R. Chemoreceptor reflexes in preterm infants: the effects of gestational age and post-natal age on ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics 1975; 55: 604–13.PubMedGoogle Scholar
  26. 26.
    Rigatto H, Brady J. Periodic breathing and apnea in preterm infants. I: Evidence for hypoventilation, possibly due to central respiratory depression. Pediatrics 1972; 50: 202–18.PubMedGoogle Scholar
  27. 27.
    Steward DJ. Preterm newborn infants are more prone to complications following minor surgery than arc term infants. Anesthesiology 1982; 56: 304–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Gregory GA, Steward DJ. Life-threatening perioperative apnea in the ex-“premie.” Anesthesiology 1983; 59: 495–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Delevoria-Papadopoulos M, Ronceric NP, Oske FA. Postnatal changes in oxygen transport of term premature and sick infants: the role of red cell 2, 3 diphosphoglyccrate and adult hemoglobin. Pcdiatr Res 1971; 5: 235–45.Google Scholar
  30. 30.
    Crone RK. Shock in the newborn.In: Choherty JP, Stark AR (Eds.). Manual of Neonatal Care, 2nd Ed. Boston: Little, Brown and Co. 1985; 85–89.Google Scholar
  31. 31.
    Brueck K. Temperature regulation in the newborn infant. Biologica Nconatorum 1961; 3: 65–119.Google Scholar
  32. 32.
    Schiff D, Stern L, Leduc J. Chemical thermogenesis in newborn infants: catecholamine excretion and the plasma non-esterified fatty acid response to cold exposure. Pediatrics 1966; 37: 577–82.PubMedGoogle Scholar
  33. 33.
    Himms-Hoge L. Cellular thermogenesis. Ann Rev Physiol 1976; 38: 315–52.CrossRefGoogle Scholar
  34. 34.
    Arant BS. Developmental patterns of renal functional maturation compared in the human neonatc. J Pediatr 1978; 92: 705–12.PubMedCrossRefGoogle Scholar
  35. 35.
    Leake RD. Perinatal nephrobiology: a developmental perspective. Clin Pcrionatol 1977; 4: 321–49.Google Scholar
  36. 36.
    Kotchen TA, Strickland AL, Rice TW et al. A study of the renin-angiotension system in the newborn infant. J Pediatr 1972; 80: 938–46.PubMedCrossRefGoogle Scholar
  37. 37.
    Kowarski A, Katz H, Migion CJ. Plasma aldosterone concentration in normal subject from infancy to childhood. J Clin Endocrinol Metab 1974; 38: 489–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Meschia G. Fetal nutrition. Semin Perinatology 1979; 3: 107–190.Google Scholar
  39. 39.
    Cornblath M, Forbes A, Pildes R et al. A controlled study of early fluid administration on survival in low birth weight infants. Pediatrics 1966; 38: 547–54.PubMedGoogle Scholar
  40. 40.
    Stonestreet BS, Rubin L, Pollak A et al. Renal functions of low birthweight infants with hyperglycemia and glucosuria produced by glucose infusions. Pediatrics 1980; 66: 561–7.PubMedGoogle Scholar
  41. 41.
    Lanier WL, Stangland KJ, Scherthauer BW et al. The effects of dextrose infusion and head position on neurologic outcome after complete cerebral ischemia in primates: examination of a model. Anesthesiology 1987; 66: 39–48.PubMedCrossRefGoogle Scholar
  42. 42.
    Bennett EJ, Dougherty MJ, Jenkins MT. Fluid requirements for neonatal anesthesia and operation. Anesthesiology 1970; 32: 343–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Koren G, Butt W, Chinyanga H et al. Post operative morphine infusion in newborn infants: assessment of deposition characteristics and safety. J Pediatr 1985; 107: 963–70.PubMedCrossRefGoogle Scholar
  44. 44.
    Lynn AM, Slattery JT. Morphine pharmacokinctics in early infancy. Anesthesiology 1987; 66: 136–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Way WL, Costley EC, Way EL. Respiratory sensitivity of the newbom infant to meperidine and morphine. Clin Pharmacol Ther 1965; 6: 454–61.PubMedGoogle Scholar
  46. 46.
    Hertzka RE, Gauntlett IS, Fisher DM, Spellman MJ. Fentanyl-induced ventilatory depression: effects of age. Anesthesiology 1989; 70: 213–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Yaster M. The dose response of fentanyl in neonatal anesthesia. Anesthesiology 1987; 66: 433–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Goudsouzian NG, Standaen FG. The infant and the myoneural junction. Anesthes Analg 1986; 65: 1208–17.Google Scholar
  49. 49.
    Meistelman C, Loose JP, Saint Maurice C et al. Clinical pharmacology of vecuronium in children: studies during nitrous oxide and halothane and oxygen anaesthesia. Br J Anaesth 1986; 58: 996–1000.PubMedCrossRefGoogle Scholar
  50. 50.
    Wren WS, McShane AJ, McCarthy JG et al. Isofluranc in paediatric anesthesia: induction and recovery from anesthesia. Anaesthesia 1985; 40: 315–23.PubMedGoogle Scholar
  51. 51.
    Friesen RH, Henry DB. Cardiovascular changes in preterm nconates receiving isoflurane, halothane, fentanyl and kctaminc. Anesthesiology 1986; 64: 238–42.PubMedCrossRefGoogle Scholar
  52. 52.
    Murray D, Vandewalker G, Matherne GP, Mahoney LT. Pulsed doppler and 2-dimcnsional cchocardiography: comparison of halothane and isoflurane on cardiac function in infants and small children. Anesthcsiology 1987; 67: 211–7.CrossRefGoogle Scholar
  53. 53.
    Bekhazi GB, Davis PJ. Anesthesia for nconatcs and premature infants.In: Motoyama EK, Davis PJ (Eds.). Smith’s Textbook of Pediatric Anesthesia, 5th Ed. St. Louis, CV Mosby Company 458–9.Google Scholar
  54. 54.
    Abajian C, Mellish RWP, Brown AF et al. Spinal anesthesia for surgery in the high risk infant. Ancsth Analg 1984; 63: 359–62.Google Scholar
  55. 55.
    Harnik EV, Hoy GR, Potolicchio S et al. Spinal anesthesia in premature infants recovering from respiratory distress syndrome. Anesthesiology 1986; 64: 95–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Anand KJS, Sippel WG, Aynsley-Green A. Randomized trial of fentanyl anaesthesia in pretcrm babies undergoing surgery: effects on the stress response. Lancet 1987; 1: 62–6.PubMedCrossRefGoogle Scholar
  57. 57.
    Emde RN, Harmon RJ, Metcalf D et al. Stress and neonatal sleep. Psychosom Med 1971; 33: 491.PubMedGoogle Scholar
  58. 58.
    Liu LMP, Coté CJ, Goudsouzian NG et al. Life threatening apnea in infants recovering from anesthesia. Anesthesiology 1983; 59: 506–10.PubMedCrossRefGoogle Scholar
  59. 59.
    Welborn LG, Ramirez N, Oh TH et al. Post-ancsthestic apnea and periodic breathing in infants. Anesthesiology 1986; 65: 658–61.PubMedCrossRefGoogle Scholar
  60. 60.
    Kurth CD, Spitzer AR, Broennle AM, Downes JJ. Postoperative apnea in prcterm infants. Anesthesiology 1987; 66: 483–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Welborn LG, Hannallah RS, Fink R, Hicks JM. The role of caffeine in the prevention of postoperative apnea in former premature infants. If some is good, is more better? Anesthesiology 1988; 69: A753.CrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1991

Authors and Affiliations

  • Robert K. Crone
    • 1
  • Gregory K. Sorensen
    • 1
  • Rosemary J. Orr
    • 1
  1. 1.Department of AnesthcsiologyUniversity of Washington School of Medicine and Children’s Hospital and Medical SchoolUSA

Personalised recommendations