Advertisement

Canadian Anaesthetists’ Society Journal

, Volume 27, Issue 4, pp 381–388 | Cite as

Myocardial protection during cardioplegia in open-heart surgery: a review

  • R. R. Chatrath
  • T. K. Kaul
  • D. R. Walker
Article

Abstract

The use of cardioplegia (pharmacologically induced electromechanical arrest) to achieve the ideal conditions for cardiac surgical operations was introduced over 20 years ago in clinical practice. Since then a number of ingredients have been added in various proportions to different cardioplegic solutions and their evaluation in experimental laboratories and clinical practice has continued. Any additive to a cardioplegic solution should be investigated in experimental laboratories and asanguinous cardioplegie solutions should be carefully formulated to avoid extremes of ionic concentrations, pH and osmolality. Cold blood cardioplegia has not been found advantageous when compared with conventional asanguinous solutions. A combination of pharmacologically induced arrest with cold asanguinous cardioplegie solution and topical hypothermia protects the myocardium better than topical hypothermia alone or normothermic cardioplegia, and continuous infusion of cardioplegie solutions has proved no better than multidose administration. Multidose administration of cold cardioplegie solutions with moderate hypothermia and surface cooling has been found most satisfactory for prolonged aortic cross clamping (up to, two hours). Use of cardioplegia in recent years has undoubtedly improved the prognosis of a number of patients undergoing surgical correction of complex cardiac lesions.

Keywords

Myocardial Protection Cardioplegic Solution Procaine Hydrochloride Cold Blood Cardioplegia Cold Cardioplegia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Il y a plus de 20 ans que la cardioplégie (usage ďagents pharmacologiques pour induire ľarrêt électro-mécanique au cœur) a été introduite en pratique dans le but ďobtenir des conditions idéales à la chirurgie cardiaque. Depuis, un nombre considérable de variations dans les ingrédients des solutions et leurs proportions ont été proposées et leur évaluation a fait ľobjet ďétudes continues en laboratoire et en clinique. Toute modification à la composition ďune solution devrait faire ľobjet ďune étude en laboratoire et ľon devrait porter une attention particulière dans la formulation de nouvelles solutions aux extrêmes des concentrations ioniques, du pH et de ľosmolarité. On n’a pas trouvé ďavantages à la cardioplégie au sang froid par comparaison aux solutions exsangues habituelles. Ľemploi de solutions exsanges glacées associé à un refroidissement de surface du myocarde, fournit une meilleure protection que ľhypothermie de surface isolée ou ľusage ďune solution cardioplégique normothermique. La perfusion continue de la solution cardioplégique n’est pas supérieure à ľadministration intermittente de solution. Ľemploi combiné de cardioplégie administrée de façon intermittente, avec une hypothermie systémique modérée et une hypothermie de surface du myocarde, fournit une bonne protection et permet des clampages aortiques prolongés (jusqu’à deux heures). Il ne fait aucun doute que ľemploi de cardioplégie au cours des dernières années a contribué à ľamélioration du pronostic chirurgical de nombreux patients présentant des pathologies cardiaques complexes.

References

  1. 1.
    Cross, F.S., Jones, R.D., Berne, R.M. Localised cardiac hypothermia as an adjunct to elective cardiac arrest. Surgical Forum8: 355–359 (1957).PubMedGoogle Scholar
  2. 2.
    Stemmers E.A., McCart P., Stanton, W.,et al. Functional structural alterations in the myocardium during aortic cross clamping. J. Thoracic & Cardiovascular Surgery66: 754–770 (1973).Google Scholar
  3. 3.
    Benzing, G., Stockert, J., Nave, E. &Kaplan, S. Myocardial ischaemia and cardiopulmonary bypass. Cardiovascular Research7: 186–195 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    Poirier, R.A., Guyton, R.A., McIntosh, C.L. &Morrow, A.G. Drip retrograde coronary sinus perfusion for myocardial protection during aortic cross clamping. J. Thoracic & Cardiovascular Surgery70: 966–973 (1975).Google Scholar
  5. 5.
    Tyers, G.F.O., Williams, E.K., Hughes, K.C. &Todd, G.J. Effect of perfusate temperature on myocardial protection from ischaemia. J. Thoracic & Cardiovascular Surgery78: 766–771 (1976).Google Scholar
  6. 6.
    Tyers, G.F.O., Todd, G.J., Niebaur, I.M., Manley, M.J. &Waldhausen, J.A. Effect of intracoronary tetrodotoxin on the recovery of the isolated working heart from 60 minutes of ischaemia. Circulation49:50: 175–179 (1974).Google Scholar
  7. 7.
    Ebert, P.A., Greenfield, L.J., Austein, W.G.,et al. Experimental comparison of methods for protecting the heart during aortic occlusion. Annals of Surgery. 755: 25–32 (1962).Google Scholar
  8. 8.
    Melrose, D.G., Dreger, B., Bentall, H.H. &Baker, J.B.E. Elective cardiac arrest. Lancet2: 21–22 (1955).CrossRefGoogle Scholar
  9. 9.
    Laks, H., Barner, H.B. &Kaiser, G. Cold blood cardioplegia. J. Thoracic & Cardiovascular Surgery77: 319–322 (1979).Google Scholar
  10. 10.
    Roe, B.B., Hutchinson, J.C. &Fishman Myocardial protection with cold ischaemic potassium-induced cardioplegia. J. Thoracic & Cardiovascular Surgery73: 366–374 (1977).Google Scholar
  11. 11.
    Greipp, R.B., Stinson, E.B. &Shumway, N.S. Profound hypothermia for myocardial protection during open-heart surgery. J. Thoracic & Cardiovascular Surgery66: 731–741 (1973).Google Scholar
  12. 12.
    Shumway, N.F., Lower, R.R. &Stoffer, R.C. Selective hypothermia of the heart in anoxic cardiac arrest. Surg. Gynae. & Obst.129: 750–754 (1959).Google Scholar
  13. 13.
    Levitsky’s Intercoronary perfusate for myocardial protection. Ann. Thoracic Surgery24: 297–298 (1977).Google Scholar
  14. 14.
    Buckberg, G.D. Left ventricular subendocardial necrosis. Ann. Thoracic Surgery24: 299–390 (1977).Google Scholar
  15. 15.
    Gillette, P.C., Pinsky, W.W., Lewis, R.M., Burnet, E.P., Wood, J.M., Entman, M.L. &Schwartz, A. Myocardial depression after elective ischaemic arrest. Subcellular biochemistry and prevention. J. Thoracic & Cardiovascular Surgery77: 608–618 (1979).Google Scholar
  16. 16.
    Todd, G.J. &Tyers, G.F.O. Amelioration of the effects of ischaemic cardiac arrest by intracoronary administration of cardioplegic solution. Circulation52: 1111–1117 (1975).PubMedGoogle Scholar
  17. 17.
    Angell, W.W., Rikkers, L., Dong, E. &Shumway, N.E. Organ viability with hypothermia. J. Thoracic & Cardiovascular Surgery58: 619–624 (1969).Google Scholar
  18. 18.
    Maloney, J.V., Cooper, N., Mulder, D.G. &Buckberg, G.D. Depressed cardiac performance after mitral valve replacement: a problem of myocardial preservation during operation. Circulation51: 52 Suppl. 1, 3–7 (1975).Google Scholar
  19. 19.
    Hooker, D.R. On recovery of the heart in electric shock. American Journal of Physiology91: 305–328 (1930).Google Scholar
  20. 20.
    Ringer’s J. Physiology4: 29–44 (1883).Google Scholar
  21. 21.
    Schaff, H.V., Dumbroff, R., Flaherty, J.T., Buckley, B., Hutchins, M., Goldman, R.A. &Gott, V.L. Effect of potassium cardioplegia on myocardial ischaemia and post-arrest ventricular functions. Circulation58: 240–249 (1978).PubMedGoogle Scholar
  22. 22.
    Ellis, R.J., Pryor, W. &Ebert, P.A. Advantages of potassium cardioplegia and perfusion hypothermia in left ventricular hypertrophy. Ann. Thoracic Surgery24: 299–306 (1976).Google Scholar
  23. 23.
    Cunningham, J.N. jrJnr.,Abbas, J.S., Adams, Px., Nathan, J., Klugman, I. &Spencer, F.C. Constant pressure aortic root perfusion versus cardioplegia and hypothermia. Comparison of methods of myocardial protection.77: 496–503 (1979).Google Scholar
  24. 24.
    Rovetto, M.S., Whitmer, J.T. &Neely, J.R. Comparisons of the effects of anoxia and wholeheart ischaemia on carbohydrate utilization in isolated working rat hearts. Circulation research32: 699–771 (1973).PubMedGoogle Scholar
  25. 25.
    Nelson, R.L., Goldstein, S.M., McConnell, D.M., Malony, J.V. &Buckberg, G.D. Improved myocardial performance after aortic cross clamping by combining pharmacological arrest with topical hypothermia. Circulation Supp. 3. Cardiovascular Surgery54: 111, 11–16 (1976).Google Scholar
  26. 26.
    Hearse, D.J., Stewart, D.A. &Braimbridge, M.V. Cellular protection during myocardial ischaemia: the development and characterization of a procedure for the induction of reversible ischaemic arrest. Circulation54: 193–202 (1976).PubMedGoogle Scholar
  27. 27.
    Kaul, T.K., Groom, M., Walker, D.R. &Watson, D.A. Myocardial protection during prolonged aortic cross clamping. VIII World Congress of International Cardiovascular Society. San Francisco. Sept. 1979.Google Scholar
  28. 28.
    Lolley, D.M., Ray, J.F., Myers, W.O. &Sautter, R.D. Myocardial protection (Letter to the Editor). J. Thoracic & Cardiovascular Surgery77: 631–632 (1979).Google Scholar
  29. 29.
    Bretschneider, J., Lubner, G., Knoll, D., Lohr, B., Norbeck, H. &Aplekerman, P.G. Myocardial resistance and tolerance to ischaemia: physiological and biochemical basis. J. Thoracic & Cardiovascular Surgery16: 241–260 (1975).Google Scholar
  30. 30.
    Kirsch, V., Rodewald, G. &Kalmar, P. Induced ischaemic arrest. Clinical experiences with cardioplegia in open-heart surgery. J. Thoracic & Cardiovascular Surgery63: 121–130 (1972).Google Scholar
  31. 31.
    Hearse, D.J., Stewart, D.A. &Braimbridge, M.V. Myocardial protection during bypass and arrest. J. Thoracic & Cardiovascular Surgery72: 880–884 (1976).Google Scholar
  32. 32.
    Crayer, J.M., Sams, A.B. &Hatcher, C.R. jrJr. Potassium-induced cardioplegia additive protection against ischaemic myocardial injury during coronary revascularization. J. Thoracic & Cardiovascular Surgery76: 24–27 (1978).Google Scholar
  33. 33.
    Kirklin, J.W., Conti, V.R. &Blackstone, E.H. Prevention of myocardial damage during cardiac operations. New England Journal of Medicine301: 135–141 (1979).PubMedCrossRefGoogle Scholar
  34. 34.
    Gharagozloo, F., Bulkley, B.H., Hutchins, G.M., Bixler, T.J., Schaff, H.V., Flaherty, J.T. &Gardener, T.J. Potassium-induced cardioplegia during normothermic cardiac arrest: morphological study of the effect of varying concentrations of potassium on myocardial anoxic injury. J. Thoracic & Cardiovascular Surgery77: 602–607 (1979).Google Scholar
  35. 35.
    Lam, C.R., Geogme, Gnat. &Lepore, A. Induced cardiac arrest for intracardiac surgical procedures. J. Thoracic Surgery30: 620–625 (1965).Google Scholar
  36. 36.
    Helmsworth, J.A., Kaplan, S., Clark, L.C., McAdams, A.J., Matthews, S.E.C. &Edwards, F.K. Myocardial injury associated with asytole induced with potassium citrate. Ann. Surgery149: 200 (1959).CrossRefGoogle Scholar
  37. 37.
    Effler, D.B., Knight, H.F., Groves, L.K. &Kloff, W.F. Elective cardiac arrest for openheart surgery. Surg. Gynae. & Obst.105: 407–416 (1957).Google Scholar
  38. 38.
    Gay, W.A. &Ebert, P.A. Functional metabolic and morphological effects of potassium-induced cardioplegia. Surgery74: 283–290 (1973).Google Scholar
  39. 39.
    Follette, D., Fey, K., Mulder, D., Maloney, J.K. jrJr. &Buckberg, G.D. Prolonged safe aortic clamping by combining membrane stabilization: Multidose cardioplegia and appropriate pH perfusion. J. Thoracic & Cardiovascular Surgery74: 682–689 (1977).Google Scholar
  40. 40.
    Kaul, T.K.,Watson, D.A.,Fortune, S.J.,Blackett, R. &Walker, D.R. Enhanced anaerobiosis in global and regional ischaemia. J. Molecular & Cellular cardiology suppl. 2 (1979).Google Scholar
  41. 41.
    Hearse, D.J., Stewart, D.A. &Braimbridge, M.V. Myocardial protection during ischaemic cardiac arrest: possible deleterious effect of glucose mannitol in coronary infusate. J. Thoracic & Cardiovascular Surgery76: 16–23 (1978).Google Scholar
  42. 42.
    Rahn, H., Reeves, R.B. &Howell, B.J. Hydrogen ion regulation. Temperature and evolution. American review of respiratory diseases.112: 165–172 (1975).Google Scholar
  43. 43.
    Mulder, D.G. Technique for cardioplegia. J. Thoracic & Cardiovascular Surgery77: 325–326 (1979).Google Scholar
  44. 44.
    Jynge, P., Norway, T., Hearse, D.J., Leiris, J. de., Feuvray, D. &Braimbridge, M.V. Protection of the ischaemic myocardium: ultrastructive enzymatic and functional assessment of the efficacy of various cardioplegic infusates. J. Thoracic & Cardiovascular Surgery76: 2–5 (1978).Google Scholar
  45. 45.
    Braimbridge, M.V. Equipment for inducing cold cardioplegic arrest. J. Thoracic & Cardiovascular Surgery77: 323–324 (1979).Google Scholar
  46. 46.
    Englemen, R.M.,Auvil, J.,O’Donoghue, M.J. &Levitsky’s The significance of multidose cardioplegia and hypothermia in myocardial preservation during ischaemic arrest. J. Thoracic & Cardiovascular Surgery 555–563 (1978).Google Scholar
  47. 47.
    Jenning, R.B., Early phase of myocardial ischaemia injury and infarction. American Journal of Cardiology24: 753 (1976).CrossRefGoogle Scholar
  48. 48.
    Danforth, W.H., Naegle, S. &Bing, R.J. Effect of ischaemia and re-oxygenation of glycolytic reactions and adenosine triphosphate in heart muscle. Circulation Research8: 965–971 (1960).PubMedGoogle Scholar
  49. 49.
    Apstein, C.S., Decklbaum, L., Mueller, M., Hagopian, L. &Hood, W.B. jrJr. Graded global ischaemia and reperfusion: cardiac function and lactate metabolism. Circulation55: 864–872 (1977).PubMedGoogle Scholar
  50. 50.
    Conn, H.L., Wood, J.C. &Morazes, G.S. Rate of change in myocardial glycogen and lactic acid following arrest of coronary circulation. Circulation research7: 721–727 (1959).PubMedGoogle Scholar
  51. 51.
    Engedal, H., Skagseth, E., Saetersdal, T.S. &Myklebust, R. Cardiac hypothermia evaluated by ultrastructural studies in man. J. Thoracic & Cardiovascular Surgery75: 548–554 (1978).Google Scholar
  52. 52.
    McGregor, D.C., Wilson, G.J., Tanaka, S., Holness, D.E., Silver, M.D., Rubis, L.J., Goldstein, W. &Grunstenson, J. Ischaemic contracture of left ventricle. Production and prevention. J. Thoracic & Cardiovascular Surgery70: 945–953 (1975).Google Scholar
  53. 53.
    Rudolph, A.M. &Heyman, M.A. Circulation of the fetus in uterus. Methods for studying distribution of blood flow cardiac output and organ blood flow. Circulation Research21: 163–184 (1967).PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1980

Authors and Affiliations

  • R. R. Chatrath
    • 1
  • T. K. Kaul
    • 1
  • D. R. Walker
    • 1
  1. 1.Department of Anaesthesia and Cardiovascular UnitKillingbeck HospitalLeedsEngland

Personalised recommendations