Advertisement

Limits of high frequency percutaneous transtracheal jet ventilation using a fluidic logic controlled ventilator

  • R. Brian Smith
  • Miroslav Klain
  • Maciej Babinski
Article

Abstract

A study was undertaken on dogs to find the limit of carbon dioxide exchange with high frequency jet ventilation using a fluidic logic controlled oxygen jet ventilator. Fifteen dogs were ventilated through a transtracheal catheter at respiratory rates up to 600 per minute. The following were recorded: aortic, pulmonary artery, pulmonary arterial wedge, and central venous blood pressures; intratracheal pressure; electrocardiogram; inspiratory and expiratory time of the jet; arterial and central venous blood gases; intermittent cardiac output.

Normal gas exchange was found up to a respiratory rate of 400 per minute with low tidal volume and low intratracheal pressures. There were no adverse circulatory effects up to a rate of 400 per minute. At rates of 500 and 600 per minute, cardiac contractility was unaffected, but a decreased heart rate and increased peripheral resistance produced a fall in cardiac output. There was no interference with the resumption of spontaneous ventilation during weaning.

In a control series of five dogs, apnoeic oxygenation was used. The PaCO2 was allowed to reach 15.96 kPa (120 torr). High frequency jet ventilation was then started at arate of 600 per minute and decreased in increments to 100 per minute. Arterial blood gases were continuously recorded through an intra-arterial catheter connected to a mass spectrometer. The PaCO2 gradually declined to normal levels as the rate decreased.

Keywords

Total Peripheral Resistance Intermittent Positive Pressure Ventilation High Frequency Ventilation Central Venous Blood Transtracheal Ventilation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Cette étude a été entreprise dans le but de déterminer les limitations aux échanges du gaz carbonique survenant lors de la ventilation à haute fréquence réalisée par un ventilateur fluidique à jet ďoxygène et à contrôle logique. Quinze chiens ont été ventilés par cathéter transtrachéal à des fréquences allant jusqu’à 600 à la minute. Les paramètres qui suivent ont été enregistrés: la pression aortique, artérielle pulmonaire, capillaire bloquée et veineuse centrale; la pression intra-trachéale; ľélectrocardiogramme; la durée des phases inspiratoire et expiratoire de ľinjecteur; les tensions des gaz artériels et veineux; le débit cardiaque.

On a trouvé que les échanges gazeux restaient normaux jusqu’à la fréquence de 400 à la minute avec des petits volumes courants et de basses pressions intratrachéales et qu’à ces fréquences, il n’y avait pas de perturbations circulatoires. La contractilité cardiaque n’a pas été affectée par des fréquences de 500 et 600 à la minute, mais une diminution de la fréquence cardiaque associée à une augmentation de la résistance périphérique a été à ľorigine ďune baisse du débit cardiaque. Le retour à la respiration spontanée n’a pas été entravé pendant le sevrage.

Dans une série-contrôle de cinq chiens, on a eu recours à ľoxygénation apnéique et on a laissé la PaCO2atteindre 120 torr (15.96 kPa). On a alors débuté la ventilation à haute fréquence par injecteur à la fréquence de 600 à la minute en ralentissant progressivement par paliers de 100 torr (13.3 kPa). Les gaz artériels ont été constamment analysés par sonde artérielle branchée sur un spectomètre de masse. La PaCO2 s’est abaissée progressivement jusqu’à la normale parellèmenent à la diminution de la fréquence.

References

  1. 1.
    Jonzon, A., Obero, P.A., Sedin, G. &Sjostrand, U. High frequency low tidal volume positive pressure ventilation. Acta Physiol. Scand.80: 21A (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    Jonzon, A.,Oberg, P.A.,Sedin, G. &Sjostrand, U. High frequency positive pressure ventilation by endotracheal insufflation. Acta Anaesth. Scand. (Suppl. 43) (1971).Google Scholar
  3. 3.
    Heijman, K., Heijman, L., Jonzon, A., Sedin, G., Sjostrand, U. &Widman. B. High frequency positive pressure ventilation during anesthesia and routine surgery in man. Acta Anaesth. Scand.16: 176–187 (1972).PubMedCrossRefGoogle Scholar
  4. 4.
    Jonzon, A.,Sedin, G. &Sjostrand, U. High-frequency positive pressure ventilation (HFPPV) applied for small lung ventilation and compared with spontaneous respiration and continuous positive airway pressure (CPAP). Acta Anaesth. Scand. (Suppl. 53) 23 (1973).Google Scholar
  5. 5.
    Lunkenheimer, P.P., Raafflenbeul, W., Keller, H., Frank, I., Dickhut, H.H. &Fuhrmann, C. Application of transtracheal pressure oscillations as a modification of “diffusion respiration.” Br. J. Anaesth.44: 627 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    Butler, W.J., Bohn, D.J., Miyasaka, K., Bryan, A.C. &Froese, A.B. Ventilation of humans by high frequency oscillation. AnesthesiologyS368: 51 (1979).Google Scholar
  7. 7.
    Smith, R.B. Transtracheal ventilation during anesthesia. Anesth. & Analg.53: 225–228 (1974).Google Scholar
  8. 8.
    Smith, R.B., Meyers, E.N. &Sherman, H. Transtracheal ventilation in paediatric patients — case reports. Br. J. Anaesth.46: 313–314 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    Rock, J.J., Pfaeffle, H., Smith, R.B., Medelow, H. &Klain, M. High pressure jet insufflation used to prevent aspiration and its effects on the tracheal mucosal wall. Crit. Care Med.4: 135 (1976).CrossRefGoogle Scholar
  10. 10.
    Smith, R.B., Babinski, M., Klain, M. &Pfaeffle, H. Percutaneous transtracheal ventilation. J.A.C.E.P.5: 765–770 (1976).Google Scholar
  11. 11.
    Klain, M. &Smith, R.B. Fluidic technology. Anaesthesia31: 750–757 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    Klain, M. &Smith, R.B. High frequency percutaneous transtracheal jet ventilation. Crit. Care Med.5: 280–287 (1977).CrossRefGoogle Scholar
  13. 13.
    Babinski, M.,Klain, M. &Smith, R.B. High frequency jet ventilation. Abstracts of Papers Presented (pp. 781–782). American Society of Anesthesiologists Annual Meeting, New Orleans, LA, October 15–19 (1977).Google Scholar
  14. 14.
    Carlon, G.C., Ray, C, Kahn, R.C. &Howland, W.S. High frequency positive pressure ventilation for prolonged respiratory support. AnesthesiologyS189: 51 (1979).Google Scholar
  15. 15.
    Bendixen, H.H., Hedley-Whyte, J. &Laver, M.B. Impaired oxygenation in surgical patients general anesthesia with controlled ventilation. New Eng. J. Med.269: 991–996 (1963).PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1980

Authors and Affiliations

  • R. Brian Smith
    • 1
    • 3
  • Miroslav Klain
    • 2
  • Maciej Babinski
    • 1
  1. 1.Department of AnesthesiologyThe University of Texas Health Science CenterSan Antonio
  2. 2.University of PittsburgPittsburg
  3. 3.Department of AnesthesiologyThe University of Texas Health Science CenterSan Antonio

Personalised recommendations