Advertisement

Canadian Anaesthetists’ Society Journal

, Volume 24, Issue 1, pp 57–69 | Cite as

Effects of althesin, etomidate and fentanyl on haemodynamics and myocardial oxygen consumption in man

  • D. Patschke
  • J. B. Brückner
  • H. J. Eberlein
  • W. Hess
  • J. Tarnow
  • A. Weymar
Article

Summary

The acute effects of althesin, etomidate and fentanyl upon haemodynamics, myocardial contractility and oxygen consumption of the heart were studied in healthy premedicated patients (n = 15) lightly anaesthetized with N2O-O2 (ratio 2:1), 0.3 volumes per cent of halothane and isoflurane respectively. All individuals were ventilated at a normal level. The patients (n = 9) in the halothane group received etomidate 0.3 mg/kg and 20 minutes later althesin 0.075 ml/kg intravenously. In a second group of 6 patients on isoflurane fentanyl 0.01 mg/kg was given. Etomidate did not affect the cardiovascular system significantly. While the decrease in blood pressure after althesin (24 per cent) was the result of a reduction in total peripheral resistance (32 per cent), hypotension associated with fentanyl (23 per cent) was caused by diminished cardiac output due to bradycardia (18 per cent). Load data, heart rate, and maximum dp/dt indicated moderate negative inotropic properties only of althesin. Using the complex haemodynamic parameter developed by Bretschneider the myocardial oxygen consumption was calculated. The energy demand of the heart decreased with etomidate, althesin and fentanyl by 14 per cent, 16 per cent and 32 per cent respectively.

It is concluded that the risk of cardiovascular depression at induction in patients with impaired myocardial performance and coronary insufficiency can be minimized with etomidate and/or fentanyl.

Keywords

Fentanyl Cardiac Index Coronary Blood Flow Etomidate CANADIAN Anaesthetist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les effets aigus de ľalthésine, de ľétomidate et du fentanyl sur ľhémodynamique, la contractilité myocardique et la consommation ďoxygène du cœur ont été étudiés chez 15 patients en bon état général, anesthésiés légèrement avec N2O-O2 (2:1) et 0.3 pour cent ďhalothane, ou N2O-O2 (2:1) et 0.3 pour cent ďisoflurane. Tous ont été normoventilés. Les neuf patients anesthésiés à ľhalothane ont reçu 0.3 mg/kg ďétomidate et 20 minutes plus tard 0.075 mg/kg ďalthésine par voie intra-veineuse, tandis que ľautre groupe de six patients anesthésiés à ľisoflurane a reçu 0.01 mg/kg de fentanyl.

Ľétomidate n’a pas semblé affecter le système cardio-vasculaire de façon significative.

La diminution (24 pour cent) de la pression artérielle après ľathésine résultait ďune diminution (32 pour cent dans la résistance totale périphérique; ľhypotension observée après le fentanyl (23 pour cent) était attribuable à une diminution du débit cardiaque (technique de thermodilution) par bradycardie (18 pour cent). Les données de pré et post-charge, la fréquence cardiaque, le rapport dp/dt max, ont montré des propriétés inotropiques négatives modérées avec ľalthésine seulement. Grâce au paramètre hémodynamique complexe développé par Bretschneider, on a pu quantifier la consommation du myocarde en O2: la demande énergétique du cœur a diminué avec ľétomidate, ľalthésine et le fentanyl, soit dans ľordre de 14 pour cent, de 16 pour cent et de 32 pour cent.

Nous concluons que le risque de dépression cardio-vasculaire à ľinduction chez des patients à fonction myocardique comprise et porteurs ďinsuffisance coronarienne peut être diminué avec ľemploi de ľétomidate et/ou du fentanyl.

References

  1. 1.
    Braunwald, E. Control of myocardial oxygen consumption. Amer. J. Cardiol.27, 416 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    Bretschneider, H.J. Aktuelle Probleme der Koronardurchblutung und des Myokardstoffwechsels. Regensb. ärztl. Fortbildg.15, 1 (1967).Google Scholar
  3. 3.
    Bretschneider, H.J., Cott, L.A., Hensel, I., Kettler, D., &Martell, J. Ein neuer komplexer hämodynamischer Parameter aus 5 additiven Gliedern zur Bestimmung des O2-Bedarfs des linken Ventrikels. Pfluegers Arch. Eur. J. Physiol.319, 14 (1970).Google Scholar
  4. 4.
    Bretschneider, H.J. Die hämodynamischen Determinanten des O2 — Bedarfs des Herzmuskels. Arzneimittelforschung (Drug Res.)21, 1515 (1971).Google Scholar
  5. 5.
    Bretschneider, H.J., Martel, J., Hellige, G., Hensel, I., &Kettler, D. Korrelation des endsystolischen Ventrikelvolumens pro Gewichtseinheit (ESV/100 g) zu Potenzfunktionen des arteriellen Druckes (P) und der ventrikulären Druckanstiegsgeschwindigkeit (dp/dt max). Verh. Dtsch. Ges. Kreislaufforsch.38, 233 (1972).PubMedGoogle Scholar
  6. 6.
    Campbell, D., Forrester, A.C., Miller, D.C., Hutton, I., Kennedy, J.A., Lawrie, I.D.V., &Lorimer A.R. A preliminary clinical study of CT 1431 — a steroid anaesthetic agent. Brit. J. Anaesth.43, 14 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    Clark, R.S.J., Carson, I.W., &Dundee, J.W. Some aspects of the clinical pharmacology of Althesin. Postgrad. Med. J., Supplem. 2,48, 62 (1972).Google Scholar
  8. 8.
    Clark, R.S.J., Montgomery, S.J., Dundee, J.W., &Bovill, J.G. Clinical studies of induction agents XXXIX: CT 1341, a new steroid anaesthetic. Brit J. Anaesth.43, 947 (1971).CrossRefGoogle Scholar
  9. 9.
    Doenicke, A., Gabanyi, D., Lemcke, H., &Schurk-Bulich, M. Kreislaufverhalten und Myokardfunktion nach drei kurzwirkenden i.v. Hypnotika Etomidate, Propanidid, Methohexital. Anaesthesist23, 108 (1974).PubMedGoogle Scholar
  10. 10.
    Doenicke, A., Lorenz, W., Beigl, R., Bezecny, H., Uhlig, G., Kalmar, L., Praetorius, B., &Mann, G. Histamine release after intravenous application of short-acting hypnotics. Brit. J. Anaesth.45, 1097 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    Egeh, E.I., Saidman, L.J., &Brandstater, B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology26, 756 (1965).CrossRefGoogle Scholar
  12. 12.
    Fennessy, M.R. &Rattray, J.F. Cardiovascular effects of intravenous morphine in the anesthetized rat. Eur. J. Pharmacol.14, 1 (1971).PubMedCrossRefGoogle Scholar
  13. 13.
    Foex, P. &Prys-Roberts, C. Pulmonary haemodynamics and myocardial effects of althesin (CT 1341) in the goat. Postgrad. Med. J. Supplem. 2,48: 24 (1972).Google Scholar
  14. 14.
    Freye, E. Cardiovascular effects of high dosages of fentanyl, meperidine, and naloxone in dogs. Anesth. Analg.53, 40 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    Gordh, T. The effect of althesin on the heartin situ in the cat. Postgrad. Med. J., Supplem. 2,48, 32 (1972).Google Scholar
  16. 16.
    Gorlin, R. Regulation of coronary blood flow. Brit. HeartJ. 33, Supplement 9.Google Scholar
  17. 17.
    Hall, L.W. Althesin in the larger animals. Postgrad. Med. J., Supplement 2,48, 55 (1972).PubMedGoogle Scholar
  18. 18.
    Hempelmann, G., Helms, U., &Waldhausen, E. Hämodynamische Veränderungen durch CT 1341 bei herzchirurgischen Eingriffen. Anaesthesist22, 345 (1973).PubMedGoogle Scholar
  19. 19.
    Jannssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L., &Lenaerts, F.M. Etomidate, R-(+)-ethyl-1-1-(α-methyl-benzyl)-immidazole-5-carboxylate (R 16 659), a potent, short-acting relatively atoxic intravenous hypnotic agent in rats. Arzneimittelforschung (Drug Res.)21, 1234 (1971).Google Scholar
  20. 20.
    Kettler, D. Sauerstoffbedarf und Sauerstoffversorgung des Herzens in Narkose. Anaesthesiol. Resuscit.67 (1973).Google Scholar
  21. 21.
    Kettler, D., Sonntag, H., Donath, K., Regensburger, D., &Schenk, H.D. Hämodynamik, Myokardmechanik, Sauerstoffbedarf und Sauerstoffversorgung des menschlichen Herzens mit Etomidate. Anaesthesist23, 116 (1974).PubMedGoogle Scholar
  22. 22.
    Kettler, D. &Sonntag, H. Intravenous anaesthetics; coronary blood flow and myocardial oxygen consumption. Acta Anaesth. Belg.3, 384 (1974).Google Scholar
  23. 23.
    Morgan, M., Lumley, J., &Whitwam, J.G. Etomidate — a new water soluble non-barbiturate intravenous induction agent. Lancet1, 955 (1975).PubMedCrossRefGoogle Scholar
  24. 24.
    Nelson, R.R., Gobel, F.L., &Jorgensen, C.R. Hemodynamic predictors of myocardial oxygen consumption during static and dynamic exercise. Circulation50, 1179 (1974).PubMedGoogle Scholar
  25. 25.
    Ostheimer, G.W., Shanahan, E.A., Guyton, R.A., Daggett, W.M., &Lowenstein, E. Effects of fentanyl nad droperidol on canine left ventricular performance. Anesthesiology42: 288 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    Patschke, D., Brückner, J.B., Gethmann, J.W., Tarnow, J., &Weymar, A. Influence of althesin on coronary blood flow and myocardial oxygen consumption in dogs. Acta Anaesth. Scand.18, 23 (1974).CrossRefGoogle Scholar
  27. 27.
    Patschke, D., Bruckner, J.B., Reinecke, A., Schmicke, P., Tarnow, J., &Eberlein, H.J. Experimentelle Untersuchungen der Kreislaufwirkungen von CT 1341, einem neuen Steroidanaesthetikum. Anaesthesist21, 338 (1972).PubMedGoogle Scholar
  28. 28.
    Robinson, B.F. Relation of heart rate and systolic blood pressure to the onset of pain in angina pectoris. Circulation35, 1073 (1967).PubMedGoogle Scholar
  29. 29.
    Sapthavichaikul, S., Wisborg, K., &Skovsted, P. The effect of althesin on arterial pressure, pulse rate, preganglionic sympathetic activity and barostatic reflexes in cats. Can. Anaesth. Soc. J.22, 587 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    Savege, T.M., Blogg, C.E., Foley, E.J., Ross, L., Lang, M., &Simpson, B.R. The cardiorespiratory effects of althesin and ketamin. Anaesthesia28, 391 (1973).PubMedCrossRefGoogle Scholar
  31. 31.
    Savege, T.M., Foley Eleanor, I., Coultas, R.J., Walton, B., Strunin, L., Simpson, B.R., &Scott, D.F. CT 1341: some effects in man. Anaesthesia26 402 (1971).PubMedCrossRefGoogle Scholar
  32. 32.
    Slama, H. &Piiper, J. Direktanzeigendes Rechengerät zur Bestimmung des Herzzeitvolumens mit der Thermoinjektionsmethode. Z. Kreislaufforsch.53, 322 (1964).PubMedGoogle Scholar
  33. 33.
    Sonnenblick, E.H., Ross, J., Covell, J.W., &Braunwald, E. Velocity of contraction as a determinant of myocardial oxygen consumption. Amer. J. Physiol.209, 919 (1965).PubMedGoogle Scholar
  34. 34.
    Sonnenblick, H.E., Ross, J., &Braunwald, E. Oxygen consumption of the heart. Amer. J. Cardiol.22, 328 (1968).PubMedCrossRefGoogle Scholar
  35. 35.
    Sonntag, H., Schenk, H.D., Regensberger, D., Kettler, D., Hellberg, K., Knoll, D., Donath, U., &Becker, H. Effects of althesin (Glaxo CT 1341) on coronary blood flow and myocardial metabolism in man. Acta Anaesth. Scand.17, 218 (1973).PubMedCrossRefGoogle Scholar
  36. 36.
    Sonntag, H. Koronardurchblutung und Energieumsatz des menschlichen Herzens unter verschiedenen Anaesthetika. Anaesthesiol. Resuscit.79 (1974).Google Scholar
  37. 37.
    Strauer, B.E. Contractile responses to morphine, meperidine, piritramide and fentanyl: a comparative study on the isolated ventricular myocardium. Anesthesiology37, 304 (1972).PubMedCrossRefGoogle Scholar
  38. 38.
    Tarnow, J., Brückner, J.B., Eberlein, H.J., Hess, W., &Patschke, D. Haemodynamics and myocardial oxygen consumption during isoflurane (forane) — anaesthesia in geriatric patients. Brit. J. Anaesth.48, 669 (1976).PubMedCrossRefGoogle Scholar
  39. 39.
    Wallace, A.G., Skinner, N.S., &Mitchell, J.H. Haemodynamic determinants of the maximal rate of rise of left ventricular pressure. Amer. J. Physiol.205, 30 (1963).PubMedGoogle Scholar
  40. 40.
    Weymar, A., Eigenheer, F., Gethmann, J.W., Reinecke, A., Patschke, D., Tarnow, J., &Brückner, J.B. Tierexperimentelle Untersuchungen zur Wirkung von Etomidate (R 26 490-Sulfat) auf den Kreislauf und die myokardiale Sauerstoffversorgung. Anaesthesist23, 150 (1974).PubMedGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1977

Authors and Affiliations

  • D. Patschke
    • 1
  • J. B. Brückner
    • 1
  • H. J. Eberlein
    • 1
  • W. Hess
    • 1
  • J. Tarnow
    • 1
  • A. Weymar
    • 1
  1. 1.Department of AnesthesiologyFree University of Berlin1 Berlin 19Federal Republic of Germany

Personalised recommendations