Pulmonary vascular effects of acetylsalicylic acid, chloroquine, dextran and methylprednisolone given after haemorrhagic shock in dogs

  • William H. Noble
  • Christopher E. Famewo
  • M. Bernadette Garvey


We have described increases in lung water and pulmonary vascular resistance and reduced myocardial performance in both pigs and dogs after two hours of haemorrhagic shock followed by re-infusion of blood. In this experiment haemorrhagic shock was induced by removing blood to ACD blood packs in five groups of dogs. After two hours of shock, blood was re-infused and NaHCO3 was given to correct the metabolic acidosis of shock. One group of dogs remained as control and received no drugs. Experiments were carried out on three other groups of dogs with one of aspirin, dextran and methylprednisolone given intravenously at the end of the shock period and before blood was re-infused. To allow absorption, chloroquine was given intramuscularly before the period of shock in the fifth group of dogs. In the group with no drugs pulmonary vascular resistance (PVR) increased 95 per cent (significant) from the control period to the end of the experiment. PVR in the control period was not significantly different from PVR at the end of the experiment in any drug group. However, chloroquin was associated with the greatest increase in PVR between these times (77 per cent N.S.). PVR actually fell from control levels to the end of the experiment in both the aspirin (-3.4 per cent N.S.) and dextran (-2.9 per cent N.S.) groups. PVR rose (14 per cent N.S.) from the control period to the end of the experiment in the methylprednisolone group. The aspirin, dextran and methylprednisolone PVR results are all significantly different from the “no drug” group. In both the aspirin and dextran groups platelet aggregation was inhibited. Only the methylprednisolone group had a significant increase in lung water (21 per cent) and the smallest increase in lung water occurred in the aspirin group (9.8 per cent N.S.). We could not relate lung water changes to PVR changes. The lung water changes were compatible with interstitial pulmonary oedema and did not lead to serious gas exchange problems. Myocardial performance appeared improved with dextran and methylprednisolone after shock.

We conclude that while dextran and methylprednisolone confer some benefit in preventing increases in PVR and lung water after haemorrhage shock, aspirin is the best drug of those studied in preventing these changes.


Dextran Chloroquine Pulmonary Vascular Resistance Control Period Haemorrhagic Shock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Nous avons montré dans des travaux antérieurs chez des chiens et des porcs qu’un choc hémorragique suivi ďune réinfusion du volume saigné provoquait une augmentation de ľeau pulmonaire extravasculaire et de la résistance vasculaire pulmonaire; de plus, le phénomène était associé à une diminution de ľefficacité myocardique.

Dans cette expérience-ci, nous avons à nouveau produit un choc hémorragique en saignant des chiens et en les maintenant à une pression artérielle moyenne de 50 mm Hg durant deux heures, après quoi le sang versé était retourné à ľanimal et ľon corrigeait, à ľaide de bicarbonate, ľacidose métabolique résultant de la période de choc.

Ľexpérience a porté sur cinq groupes ďanimaux: un premier, servant de témoin, n’a reçu aucun médicament à la suite de la réinfusion du sang versé; les groupes deux, trois, quatre et cinq reçurent respectivement de ľacide acétylsalicylique, de la chloroquine, du dextran, de la méthylprednisolone. Le médicament était administré par voie veineuse avant la réinfusion du sang, sauf pour les animaux du groupe trois où la chloroquine était administrée par voie intramusculaire avant la création du choc pour en assurer ľabsorption.


  1. 1.
    Bo, G. &Hognestad, J. Thrombocytes and pulmonary vascular resistance. Microcirculatory approaches to current therapeutic problems. Symposia. 6th Europ. Conf. Microcirculation, Aalborg 1970, pp. 32–34 (Karger, Basch 1971).Google Scholar
  2. 2.
    Noble, W.H. Early changes in lung water after hemorrhagic shock in pigs and dogs. Can. Anaesth. Soc. J.22: 39–49 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    Connell, R.S., Swank, R.L., &Webb, M.C. The development of pulmonary ultrastructural lesions during hemorrhagic shock. J. of Trauma15: 116–129 (1975).CrossRefGoogle Scholar
  4. 4.
    Goodman, J.R., Lim, R.C., Blaisdell, F.W., Hall, A.D., &Thomas, A.N. Pulmonary microembolism in experimental shock. Am. J. of Pathol.52: 391–400 (1968).Google Scholar
  5. 5.
    Ljungquist, U.E. &Schwartz, S.I. Pulmonary platelet trapping during shock and pulmonary embolus. J. of Surg. Res.18: 559–565 (1975).CrossRefGoogle Scholar
  6. 6.
    Bergentz, S.E.,Lewis, D.H., &Ljungquist, U. Trapping of platelets in the lung after experimental injury. Microcirculatory approaches to current therapeutic problmes. Symposia 6th Europ. Conf. Microcirculation, Aalborg 1970, pp. 35–40 (Karger, Basel, 1971).Google Scholar
  7. 7.
    Robb, J. The role of microembolism in the production of irreversible shock. Ann. Surg.158: 685–692 (1963).PubMedCrossRefGoogle Scholar
  8. 8.
    McKay, D.G., Margaretten, W., &Csavossy, I. An election microscope study of endotoxin shock in rhesus monkeys. Surg. Gynecol. Obstet.125: 825–832 (1967).PubMedGoogle Scholar
  9. 9.
    Moss, G.S., Das Gupta, T.K., Newson, B., &Nyhus, L.M. Morphological changes in the primate lung after hemorrhagic shock. Surg. Gynecol. Obstet.134: 3–9 (1972).PubMedGoogle Scholar
  10. 10.
    Pulmonary effects of non-thoracic trauma. Proceedings of a conference conducted by the committee on Trauma, Div. of Med. Sci., Nat. Acad. of Sci., Nat. Res. Council, J. of Trauma. Vol. 8 (1968).Google Scholar
  11. 11.
    Depalma, R., Coil, J., Davis, J., &Holden, W. Cellular and ultrastructural changes in endotoxemia: a light and electron microscopic study. Surgery,62: 505 (1967).Google Scholar
  12. 12.
    Shoemaker, W.C. Pattern of pulmonary hemodynamic and functional changes in shock. The lung in the critically ill patient. Baltimore, Williams & Wilkins Co., pp. 33–43 (1976).Google Scholar
  13. 13.
    Porcelli, R., Foster, W.M., Bergofsky, E.H., Bicker, A., Kaur, R., Demeny, M., &Reich, T. Pulmonary circulatory changes in pathogenesis of shock lung. Amer. J. of Med. Sci.268: 250–261 (1974).CrossRefGoogle Scholar
  14. 14.
    Cook, W.A. Experimental shock lung model. J. Trauma8: 793 (1968).PubMedCrossRefGoogle Scholar
  15. 15.
    Famewo, C.E., Noble, W.H., &Garvey, M.B. Use of aspirin in hemorrhagic shock. Can. Anaesth. Soc. J.22: 50–60, 1975.PubMedCrossRefGoogle Scholar
  16. 16.
    Peer, R.M. &Schwartz, S.I. Prevention of pulmonary platelet trapping following trauma. Surgical forum224: 5–7 (Abst.) (1973).Google Scholar
  17. 17.
    Poller, L. Recent advances in thrombosis. Edinburgh, Churchill-Livingston Co. Ch. 7 (1973).Google Scholar
  18. 18.
    Weiss, J.A. The effects of clinical dextran on platelet aggregation, adhesion and ADP release in man;in vivo andin vitro studies. J. Lab. Clin. Med.69: 37–46 (1967).PubMedGoogle Scholar
  19. 19.
    Famewo, C.E., Noble, W.H., &Garvey, M.B. Use of chloroquine in shock. Can. Anaes. Soc. J.22: 687–695 (1975).CrossRefGoogle Scholar
  20. 20.
    Noble, W.H. &Kay, J.C. Cardiac catheterization in dogs. Can. Anaes. Soc. J.21: 616–620 (1974).CrossRefGoogle Scholar
  21. 21.
    Noble, W.H. &Severinghaus, J.W. Thermal and conductivity dilution curves for rapid quantitation of pulmonary edema. J. Appl. Physiol.32: 770–775 (1972).PubMedGoogle Scholar
  22. 22.
    Noble, W.H., Obdrzalek, J., &Kay, J.C. A new technique for measuring pulmonary edema. J. Appl. Physiol.34: 508–512 (1973).PubMedGoogle Scholar
  23. 23.
    Nunn, J.F. Applied respiratory physiology, 1st ch. 9: pp. 244, London: Butterworths (1969).Google Scholar
  24. 24.
    Kuwabara, S. &Duncalf, D. Effect of anatomical shunt on physiologic deadspace-totidal volume ratio: a new equation. Anaesthesiology 31: 575–577 (1969).CrossRefGoogle Scholar
  25. 25.
    McKenzie, N., Heimbegker, R.D., Barnigoat, R.A., &Gergely, N.F. Bloodless openheart surgery with atraumatic extra-corporeal circulation. C.M.A.J.112: 1073–1077 (1975).Google Scholar
  26. 26.
    Snedecor, G.W. &Cochran, W.G.: Statistical methods. Iowa State Univ. Press, U.S.A. (1967).Google Scholar
  27. 27.
    Geelhoed, G.W. &Bennett, S.H. Effect of filtration and aged-cell separation in “shock lung” resulting from stored blood perfusion. Surgical forum24: 7–9 (1973).PubMedGoogle Scholar
  28. 28.
    Bennett, S.H., Geelhold, G.W., Aaron, R.K., Solis, R.T., &Hoye, R.C. Pulmonary injury resulting from perfusion with stored bank blood in the baboon and dog. J. Surg. Res.23: 295–306 (1972).CrossRefGoogle Scholar
  29. 29.
    Davidson, I., Barrett, J.A., Miller, E., &Litwin, M.S. Pulmonary microembolism associated with massive transfusion. Am. Surg.181: 51–57 (1975).Google Scholar
  30. 30.
    Gelin, L.E. Discussion. Am. Surg.182: 226 (1975).Google Scholar
  31. 31.
    Radegran, X., Bergentz, S.E., Lewis, D.H., Ljungvist, U., &Olsson, P. Pulmonary effects of induced platelet aggregation. Intravascular obstruction or vasoconstriction? Scand. J. Clin. Lab. Invest.28: 423–427 (1971).PubMedCrossRefGoogle Scholar
  32. 32.
    Bo, G. &Hognestad, J. Effects on the pulmonary circulation of suddenly induced intravascular aggregation of blood platelets. Acta. Physiol. Scand.85: 523–531 (1972).PubMedCrossRefGoogle Scholar
  33. 33.
    Wilner, G.D., Nassel, H.L., &LeRuy, E.C. Aggregation of platelets by collagen. J. Clinical Investig.47: 2616 (1968).Google Scholar
  34. 34.
    Klaize, J. Prostaglandins and platelet aggregation. M:Schettler G. (ed.). Platelets and the vessel wall; fibrin deposition. Symposium of the European Atherosclerosis Group. June 15–17, 1969. Georg Thieme Virlag Stuttgart, pp. 54 (1970).Google Scholar
  35. 35.
    Kloen, J. Relationship between chemical structure and platelet aggregation activity of prostaglandins. Biochem. Biophys. Acta. pp. 187–285 (1969).Google Scholar
  36. 36.
    RÅdecran, K. Circulatory and respiratory effects of induced platelet aggregation. An experimental study in dogs. Acta Chirurgica Scandinavica Suppl. 420 (1971). Vol. 419-429, pp. 3–24 (1972).Google Scholar
  37. 37.
    Wilson, J.W.,Ratliff, N.B.,Young, W.G.,Hackel, D.B., &Mikat, E. Changes in the morphology of leukocytes trapped in the pulmonary circulation during hemorrhagic shock.In: Microcirculatory approaches to current therapeutic problems. Symposiums, 6th Europ. Conf. for Microcirculation. Ahlborg, pp. 41–48 (1970). Basel, Switzerland: S. Karger (1971).Google Scholar
  38. 38.
    Saldeen, T. Trends in microvascular research: the microembolism syndrome. Microvasc. Res.21: 227–259 (1976).CrossRefGoogle Scholar
  39. 39.
    Busch, C., Lindquist, O., &Saldeen, T. Respiratory insufficiency in the dog induced by pulmonary microembolism and inhibition of fibriolysis. Acta Chir. Scand.140: 255–266 (1974).PubMedGoogle Scholar
  40. 40.
    RÅdecran, K. The effect of acetylsalicylic acid on the peripheral and pulmonary vascular responses to thrombin. Acta Anaesth. Scand.16: 140–146 (1972).CrossRefGoogle Scholar
  41. 41.
    Wilson, J.W. Treatment or prevention of pulmonary cellular damage with pharmacologic doses of corticosteroid.134: 675–681 (1972).PubMedGoogle Scholar
  42. 42.
    Kusajima, K., Wax, S.D., &Webb, W.R. Effects of methylprednisolone on pulmonary microcirculation. Surg. Gynecol. Obstet.139: 1 (1974).PubMedGoogle Scholar
  43. 43.
    Grylewski, R.J., Panczenko, B., Kohbut, R., Grodzinska, L., &Ocetkiewicz, A. Corticosteroids inhibit prostaglandin release from perfused mesenteric blood vessels of rabbit and from perfused lungs of sensitized guinea pig. Prostaglandins 10: 343–347 (1975).Google Scholar
  44. 44.
    Noble, W.H., Kovacs, K., &Kay, J.C. Fine structural changes in haemodynamic pulmonary oedema. Can. Anaesth. Soc. J.21: 275–284 (1974).PubMedCrossRefGoogle Scholar

Copyright information

© Canadian Anesthesiologists 1977

Authors and Affiliations

  • William H. Noble
    • 1
  • Christopher E. Famewo
    • 1
  • M. Bernadette Garvey
    • 2
  1. 1.Department of AnaesthesiaSt. Michaeľs Hospital and University of TorontoTorontoCanada
  2. 2.Division of Haematology, Department of MedicineSt. Michaeľs Hospital and University of TorontoTorontoCanada

Personalised recommendations