Annals of Nuclear Medicine

, Volume 17, Issue 6, pp 463–467 | Cite as

Thallium-201 brain SPECT to diagnose aggressiveness of meningiomas

  • Keiko Kinuya
  • Masahiro Ohashi
  • Syotaro Itoh
  • Sohtaro Sakai
  • Kenji Yamamoto
  • Kiyoshi Kakuda
  • Koji Nobata
  • Shintaro Terahata
  • Suzuka Taki
  • Seigo Kinuya
Original Articles


This investigation was conducted to determine the ability of201Tl brain SPECT with respect to preoperative prediction of lesional aggressiveness of meningioma. Fifty-nine lesions in 42 patients were examined. Early (15 min) and late (3h) SPECT were obtained. Early uptake ratio (ER; lesion to normal brain average count ratio), late uptake ratio (LR) and the ratio of LR to ER (L/E ratio) were calculated. Twenty-three lesions exhibited malignant features based on histologic or clinical course such as recurrence or skull invasion. Both ER and LR of malignant meningiomas were significantly higher than those in thirty-six benign lesions. Benign lesions were classified into two groups for further analysis: meningotheliomatous type, which is the most common histology, and benign lesions other than the meningotheliomatous (other benign) type. ER in other benign type was lower than the meningotheliomatous and the malignant type. LR afforded differentiation of the malignant type from the two benign types. These two benign types could be distinguished on the basis of the L/E ratio. These results indicate that high pre-operative ER and LR values in patients with meningioma are indicators of the aggressiveness of lesions, i.e., malignant meningioma, recurrence or skull invasion.

Key words

thallium-201 imaging brain SPECT meningioma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaaskelainen J. Seemingly complete removal of histologically benign intracranial meningioma: Late recurrence rate and factors predicting recurrence in 657 patients.Surg Neurol 1986; 25: 461–469.CrossRefGoogle Scholar
  2. 2.
    Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL. Meningioma: Analysis of recurrence and progression following neurosurgical resection.J Neurosurg 1985; 62: 18–24.PubMedGoogle Scholar
  3. 3.
    Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM. Meningioma grading. An analysis of histologic parameters.Am J Surg Pathol 1997; 21: 1455–1465.PubMedCrossRefGoogle Scholar
  4. 4.
    Perry A, Scheithauer BW, Stafford SL, Lohse CM, Wollan PC. “Malignancy” in meningiomas. A clinicopathologic study of 116 patients, with grading implications.Cancer 1999; 85: 2046–2056.PubMedGoogle Scholar
  5. 5.
    Kallio M, Sankila R, Hakulinen T, Jaaskelainen J. Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma.Neurosurgery 1992; 31: 2–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Demaerel P, Wilms G, Lammens M, Marchal G, Plets C, Goffin J, et al. Intracranial meningiomas: correlations between MR imaging and histology in fifty patients.J Comput Assist Tomogr 1991; 15: 45–51.PubMedCrossRefGoogle Scholar
  7. 7.
    Kaplan RD, Coons S, Drayer BP, Bied CR, Johnson PC. MR characteristics of meningioma subtypes at 1.5 Tesla.J Comput Assist Tomogr 1992; 16: 366–371.PubMedCrossRefGoogle Scholar
  8. 8.
    Servo A, Porras M, Jaaskelainen J, Paetau A, Haltia M. Computed tomography and angiography do not reliably discriminate malignant meningiomas from benign ones.Neuroradiology 1990; 32: 94–97.PubMedCrossRefGoogle Scholar
  9. 9.
    Black PM. Meningiomas.Neurosurgery 1993; 32: 643–657.PubMedCrossRefGoogle Scholar
  10. 10.
    Britten JS, Blank M. Thallium activation of the (Na+-K+)-activated ATPase of rabbit kidney.Biochim Biophys Acta 1968; 159: 160–166.PubMedGoogle Scholar
  11. 11.
    Tonami N. Thallium-201 SPECT in the evaluation of gliomas.J Nucl Med 1993; 34: 2089–2090.PubMedGoogle Scholar
  12. 12.
    Ancri D, Basset JY, Lonchampt MF, Etavard C. Diagnosis of cerebral lesions by thallium-201.Radiology 1978; 128: 417–422.PubMedGoogle Scholar
  13. 13.
    Kaplan WD, Takvorian T, Morris JH, Rumbaugh CL, Connlly BT, Atkins HL. Thallium-201 brain tumor imaging: A comparative study with pathologic correlation.J Nucl Med 1987; 28: 47–52.PubMedGoogle Scholar
  14. 14.
    Black KL, Hawkins RA, Kim KT, Becker DP, Lerner C, Marciano D. Use of thallium-201 SPECT to quantitate malignancy grade of gliomas.J Neurosurg 1989; 71: 342–346.PubMedCrossRefGoogle Scholar
  15. 15.
    Kim KT, Black KL, Marciano D, Mazziotta JC, Guze BH, Grafton S, et al. Thallium-201 SPECT imaging of brain tumors: Methods and results.J Nucl Med 1990; 31: 965–969.PubMedGoogle Scholar
  16. 16.
    Kosuda S, Fujii H, Aoki S, Suzuki K, Tanaka Y, Nakamura O, et al. Reassessment of quantitative thallium-201 brain SPECT for miscellaneous brain tumors.Ann Nucl Med 1993; 7: 257–263.PubMedCrossRefGoogle Scholar
  17. 17.
    Jinnouchi S, Hoshi H, Ohnishi T, Futami S, Nagamachi S, Watanabe K, et al. Thallium-201 SPECT for predicting histological types of meningiomas.J Nucl Med 1993; 34: 2091–2094.PubMedGoogle Scholar
  18. 18.
    Sugo N, Kuroki T, Nemoto M, Mito T, Seiki Y, Shibata I. Difference in Tl-201 accumulation mechanism in brain tumors: A comparison of their Na+-K+ ATPase activities.KAKU IGAKU (Jpn J Nucl Med) 2000; 37: 311–318.Google Scholar
  19. 19.
    Taki S, Kakuda K, Kakuma K, Kobayashi K, Ohashi M, Ito S, et al.201Tl SPET in the differential diagnosis of brain tumours.Nucl Med Commun 1999; 20: 637–645.PubMedCrossRefGoogle Scholar
  20. 20.
    Tedeschi E, Soricelli A, Brunetti A, Romano M, Bucciero A, Iaconetta G, et al. Different thallium-201 single-photon emission tomographic patterns in benign and aggressive meningiomas.Eur J Nucl Med 1996; 23: 1478–1484.PubMedCrossRefGoogle Scholar
  21. 21.
    Lamszus K, Lengler U, Schmidt NO, Stavrou D, Ergun S, Westphal M. Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy.Neurosurgery 2000; 46: 938–947.PubMedCrossRefGoogle Scholar
  22. 22.
    Kizana E, Lee R, Young N, Dorsch NW, Soo YS. A review of the radiological features of intracranial meningiomas.Australas Radiol 1996; 40: 454–462.PubMedCrossRefGoogle Scholar
  23. 23.
    Kasarov LB, Friedman H. Enhanced Na+-K+-activated adenosine triphosphatase activity in transformed fibroblasts.Cancer Res 1974; 34: 1862–1865.PubMedGoogle Scholar
  24. 24.
    Elligsen JD, Thompson JE, Frey ME. Correlation of (Na+-K+)-ATP activity with growth of normal and transformed cells.Exp Cell Res 1974; 87: 233–240.PubMedCrossRefGoogle Scholar
  25. 25.
    Amatya VJ, Takeshima Y, Sugiyama K, Kurisu K, Nishisaka T, Fukuhara T, et al. Immunohistochemical study of Ki-67 (MIB-1), p53 protein, p21WAF1, and p27KIP1 expression in benign, atypical, and anaplastic meningiomas.Hum Pathol 2001; 32: 970–975.PubMedCrossRefGoogle Scholar
  26. 26.
    Abramovich CM, Prayson RA. MIB-1 labeling indices in benign, aggressive, and malignant meningiomas: a study of 90 tumors.Hum Pathol 1998; 29: 1420–1427.PubMedCrossRefGoogle Scholar
  27. 27.
    Ohta M, Iwaki T, Kitamoto T, Takeshita I, Tateishi J, Fukui M. MIBI staining index and scoring of histologic features in meningioma. Indicators for the prediction of biologic potential and postoperative management.Cancer 1994; 74: 3176–3189.PubMedCrossRefGoogle Scholar
  28. 28.
    Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM. The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas.Cancer 1998; 82: 2262–2269.PubMedCrossRefGoogle Scholar
  29. 29.
    Karamitopoulou E, Perentes E, Tolnay M, Probst A. Prognostic significance of MIB-1, p53, and bcl-2 immunoreactivity in meningiomas.Hum Pathol 1998; 29: 140–145.PubMedCrossRefGoogle Scholar
  30. 30.
    Nakaguchi H, Fujimaki T, Matsuno A, Matsuura R, Asai A, Suzuki I, et al. Postoperative residual tumor growth of meningioma can be predicted by MIB-1 immunohistochemistry.Cancer 1999; 85: 2249–2254.PubMedCrossRefGoogle Scholar
  31. 31.
    Lanzafame S, Torrisi A, Barbagallo G, Emmanuele C, Alberio N, Albanese V. Correlation between histological grade, MIB-1, p53, and recurrence in 69 completely resected primary intracranial meningiomas with a 6 year mean follow-up.Pathol Res Pract 2000; 196: 483–488.PubMedGoogle Scholar
  32. 32.
    Cho H, Ha SY, Park SH, Park K, Chae YS. Role of p53 gene mutation in tumor aggressiveness of intracranial meningiomas.J Korean Med Sci 1999; 14: 199–205.PubMedGoogle Scholar
  33. 33.
    Kamei Y, Watanabe M, Nakayama T, Kanamaru K, Waga S, Shiraishi T. Prognostic significance of p53 and p21WAF1/CIP1 immunoreactivity and tumor micronecrosis for recurrence of meningiomas.J Neurooncol 2000; 46: 205–213.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahmed R, Soomro IN, Aziz SA, Hasan SH. p53 and PCNA expression in benign, atypical and malignant meningiomas.J Pak Med Assoc 1999; 49: 241–243.PubMedGoogle Scholar
  35. 35.
    Ueda T, Kaji Y, Wakisaka S, Watanabe K, Hoshi H, Jinnouchi S, et al. Time sequential single photon emission computed tomography studies in brain tumour using thallium-201.Eur J Nucl Med 1993; 20: 138–145.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • Keiko Kinuya
    • 1
  • Masahiro Ohashi
    • 2
  • Syotaro Itoh
    • 2
  • Sohtaro Sakai
    • 2
  • Kenji Yamamoto
    • 2
  • Kiyoshi Kakuda
    • 3
  • Koji Nobata
    • 3
  • Shintaro Terahata
    • 4
  • Suzuka Taki
    • 5
  • Seigo Kinuya
    • 6
  1. 1.Department of Nuclear MedicineTonami General HospitalTonami, ToyamaJapan
  2. 2.Department of NeurosurgeryTonami General HospitalTonamiJapan
  3. 3.Department of RadiologyTonami General HospitalTonamiJapan
  4. 4.Department of PathologyTonami General HospitalTonamiJapan
  5. 5.Department of RadiologyKanazawa Medical UniversityKanazawaJapan
  6. 6.Department of Biotracer MedicineKanazawa University School of Medical SciencesKanazawaJapan

Personalised recommendations