Advertisement

On selecting a subset of ifra populations which are better than a control

  • Jagdish K. Patel
Article
  • 10 Downloads

Keywords

Equation Determine Correct Selection Good Population Fight Hand Side Increase Failure Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

Seanπ 1,π 2, ...,π k k poblaciones con tasas (de morir) medias crecientes (IFRA) yπ 0 es la población de control (del mismo tipo). Se quiere utilizar muestras de tamaños iguales de cada población para seleccionar las poblaciones que son mejores queπ 0. Consideramosπ i mejor queπ 0 siγ i (x) ⩽γ 0 para ()δ todox (0<δ≤1, δ especificado) donde
$$\gamma _i (x) = - \frac{{\ell n[1 - F_i (x)]}}{x},$$
el tasa media deπ i ,F i (x) es la distribución de la variable aleatoria positiva y continua que es asociada conπ i (i=1, 2, …,k). El procedimiento consiste en ponerπ i en el subconjunto de “mejores”T i ≥c T o , donde
es el número más grande que satisface algunas probabilidades requeridas; yT i es un estadístico propio. Algunas soluciones exactas y aproximadas se obtienen considerando tres formas diferentes de estadísticos.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Barlow, R. E. and Gupta, S. S. (1969):Selection procedures for restricted families of probability distributions. Ann. Math. Statist., 40, 905–917.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Barlow, R. E. and Proschan, F. (1965):Mathematical Theory of Reliability. John Wiley and Sons, New York.MATHGoogle Scholar
  3. [3]
    Bechhofer, R. E. (1956):A single-sample multiple decision procedure for ranking means of normal populations with known variance. Ann. Math. Statist., 25, 16–29.CrossRefMathSciNetGoogle Scholar
  4. [4]
    Birnbaum, Z. W., Esary, J. D. and Marshall, A. W. (1966):A stochastic characterization of wear-out for components and systems. Ann. Math. Statist., 37, 816–826.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Gupta, S. S. (1963):Probability integrals of multivariate normal and multivariate t. Ann. Math. Statist., 34, 792–828.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Patel, J. K. (1968):Selecting a subset containing the best one of several IFRA populations. Technical Report No. 92, Department of Statistics, Univ. of Minnesota.Google Scholar
  7. [7]
    Rizvi, M. H., Sobel, Milton and Woodworth, GeorgeG. (1968):Nonparametric ranking procedures for comparison with a control. Ann. Math. Statist., 39, 2075–2093.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 1974

Authors and Affiliations

  • Jagdish K. Patel
    • 1
  1. 1.Louisiana State University in New OrleansNew OrleansUSA

Personalised recommendations