Canadian Anaesthetists’ Society Journal

, Volume 25, Issue 4, pp 312–318 | Cite as

Effects of general anaesthesia and surgery on renal function and plasma adh levels

  • H. Ishihara
  • K. Ishida
  • T. Uyama
  • T. Kudo
  • M. Kudo


Plasma levels of antidiuretic hormone (ADH) were evaluated in 40 adult patients during and after various types of anaesthesia and surgery. The plasma level of ADH increased significantly 30 minutes after the start of anaesthesia with diethyl-ether (3.7 times) and after thiopentone (1.5 times), but it increased insignificantly in neuroleptanaesthesia (2.4 times) and with halothane (1.3 times). The surgical stress evoked marked increases in plasma ADH levels especially at ten minutes after the skin incision. A slight increase in plasma ADH level still continued into the early post-operative days.

The effects of halothane anaesthesia on plasma levels of ADH and on both cortical and medullary renal blood flow (RBF) were investigated in dogs. RBF was measured by means of a heated thermocouple in two groups of eight dogs each. One group was given a high fluid load of 30 ml/kg/hr and the other a low load of 10 ml/kg/hr. The plasma level of ADH increased significantly with deepening halothane anaesthesia in the low fluid load group. However, in the high fluid load dogs it remained unchanged in spite of an increasing inspired halothane concentration. Both cortical and medullary RBF fell significantly as compared with the control values in the low fluid load group. However, in the high fluid load dogs no significant decrease was observed. These results would indicate that the anaesthetic agents investigated in the present study caused increases in plasma ADH levels, but that these antidiuretic effects of anaesthesia might be modified by the volume of fluid infused during anaesthesia and operation.


Nitrous Oxide Halothane Renal Blood Flow Thiopentone Fluid Load 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Pendant et après la chirurgie sous différents agents anesthésiques, on a déterminé la concentration plasmatique de ľhormone antidiurétique (ADH) chez 40 patients adultes opérés pour des pathologies abdominales variées. Une augmentation significative de ľADH a été notée après 30 minutes ďanesthésie à ľéther diéthylique (3.7 fois le contrôle) et le thiopentone (1.5 fois). Cette augmentation n’a pas été jugée significative après la neuroleptanesthésie (2.4 fois) et ľanesthésie à ľhalothane (1.3 fois). Le stress chirurgical a provoqué une augmentation importante, surtout à ta dixième minute après ľincision. Le niveau sanguin est demeuré légèrement élevé dans la période post-opératoire immédiate.

Les effets de ľanesthésie à ľhalothane sur la concentration plasmatique de ľADH et sur le flux sanguin rénal cortical et médullaire ont aussi fait ľobjet ďune étude chez le chien. Dans deux groupes de huit chiens, on a mesuré au thermocouple le flux sanguin rénal. Le premier groupe a reçu une surcharge liquidienne de 30 ml/kg/hre alors que ľapport n’a été que de 10 ml/kg/hre pour le deuxième groupe. La concentration plasmatique ďADH s’est élevée de façon significative dans le deuxième groupe. Toutefois, dans le premier groupe qui avait reçu le plus grand volume liquidien, le niveau plasmatique ďADH n’a pas changé malgré les augmentations de concentration de ľhalothane. Dans le groupe où ľapport liquidien a été le moins élevé, le flux sanguin cortical et le flux médullaire ont diminué de façon significative par comparaison aux valeurs de contrôle de ce groupe. Cette diminution n’a pas été notée pour le groupe surchargé. Ces résultats suggèrent que les agents anesthésiques utilisés dans cette étude augmentent le niveau ďADH, mais que les effets antidiurétiques de ľanesthésie peuvent ïtre modifiés par la quantité de liquide perfusée pendant ľanesthésie et ľopération.


  1. 1.
    Oyama, T., Sato, K., &Kimura, K. Plasma levels of anti-diuretic hormone in man during halothane anaesthesia and surgery. Canad. Anaesth. Soc. J.18: 614 (1971).PubMedGoogle Scholar
  2. 2.
    Moran, W.H., Miltenberger, F.W., Shuayb, W.A., &Zimmerman, B. The relationship of antidiuretic hormone secretion to surgical stress. Surgery56: 99 (1964).Google Scholar
  3. 3.
    Ukai, M., Moran, W., &Zimmerman, B. The role of visceral afferent pathways on vasopressin secretion and urinary secretory patterns during surgical stress. Ann. Surg.168: 16 (1968).PubMedCrossRefGoogle Scholar
  4. 4.
    Leichton, K. &Bruce, C. Distribution of kidney blood flow: a comparison of methoxyflurane and halothane effects as measured by heated thermocouple. Canad. Anaesth. Soc. J.22: 125 (1975).CrossRefGoogle Scholar
  5. 5.
    Hirasawa, H. Effects of anesthetics on blood flow of the renal cortex and medulla. Jap. J. Anesth.20: 539 (1971).Google Scholar
  6. 6.
    Husain, M.K., Fernando, N., Shapiro, M., Kagan, A., &Glick, S.M. Radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Endocrinol Metab.37: 616 (1973).PubMedGoogle Scholar
  7. 7.
    Schreier, R. &Berl, T. Nonosmolar factors affecting renal water excretion. New Engl. J. Med.292: 81 (1975).CrossRefGoogle Scholar
  8. 8.
    Goetz, K.L., Bona, G.C., &Bloxham, D.D. Atrial receptors and renal function. Physiol. Rev.55: 157 (1975).PubMedGoogle Scholar
  9. 9.
    Forsling, M.L. &Rees, M. Effects of hypoxia and hypercapnia on plasma vasopressin concentration. J. Endocrinol.67: 62P (1975).PubMedGoogle Scholar
  10. 10.
    Daniel, A.R. &Ledreis, K. Effects of ether anesthesia and haemorrhage on hormone storage and ultrastructure of the rat neurohypophysis. J. Endocrinol.34: 91 (1966).PubMedCrossRefGoogle Scholar
  11. 11.
    Simpson, P. &Forsling, M. The influence of halothane on plasma vasopressin concentrations during cardiopulmonary bypass. Brit. J. Anaesth.48: 265 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    Johnson, M.D. &Malvin, R.L. Plasma renin activity during pentobarbital anesthesia and graded hemorrhage in dogs. Am. J. Physiol.229: 1098 (1975).PubMedGoogle Scholar
  13. 13.
    Philbin, D.M., Baratz, R.A. &Patterson, R.W. The effect of carbon dioxide on plasma antidiuretic hormone levels during intermittent positive-pressure breathing. Anesthesiology33: 345 (1970).PubMedCrossRefGoogle Scholar
  14. 14.
    Kurtzman, N.A. &Boonjarern, S. Physiology of antidiuretic hormone and the interrelationship between the hormone and the kidney. Nephron15: 167 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    Miyazaki, M., Muranishi, Y., &Yokono, S. Anesthesia and renal function (Review article). Jap. J. Anesth.26: 497 (1977).Google Scholar
  16. 16.
    Deutsch, S., Bastron, R.D., Peirce, E.C.Jr., &Vandam, L.D. The effects of anaesthesia with thiopentone, nitrous oxide, narcotics and neuromuscular blocking drugs on renal function in normal man. Brit. J. Anaesth.41: 807 (1969).PubMedCrossRefGoogle Scholar
  17. 17.
    Gorman, H.M. &Craythorne, N.W.B. The effects of a new neurolept-analgesic agent (Innovar) on renal function in man. Acta. Anaesth. Scand. Supp.24: 111 (1966).CrossRefGoogle Scholar
  18. 18.
    Bastron, R.D., Perkins, F.M., &Pyne, J.L. Autoregulation of renal blood flow during halothane anesthesia. Anesthesiology46: 142 (1977).PubMedCrossRefGoogle Scholar
  19. 19.
    Jenkins, M.T. The post-operative patient and his fluid and electrolyte requirements. Brit. J. Anaesth.47: 143 (1975).PubMedCrossRefGoogle Scholar
  20. 20.
    Slnnatamby, C., Edward, C.R.W., Kltau, M., &Irvin, M.H. antidiuretic hormone response to high and conservative fluid regimes in patients undergoing operation. Surg. Gynecol. Obstet.139: 715 (1974).Google Scholar

Copyright information

© Canadian Anesthesiologists 1978

Authors and Affiliations

  • H. Ishihara
    • 1
  • K. Ishida
    • 1
  • T. Uyama
    • 1
  • T. Kudo
    • 1
  • M. Kudo
    • 1
  1. 1.Department of AnaesthesiaHirosaki University, School of MedicineHirosaki, Aomori-kenJapan

Personalised recommendations