Advertisement

Canadian Anaesthetists’ Society Journal

, Volume 22, Issue 3, pp 265–274 | Cite as

Operating room air pollution: Influence of anaesthetic circuit, vapour concentration, gas flow and ventilation

  • S. Mehta
  • W. J. Cole
  • J. Chaw
  • K. Lewin
Article

Summary

Atmospheric halothane was sampled from three selected operating theatres and anaesthetic rooms during the middle of operating sessions. Two of the operating theatres studied were ventilated with total air exchange once every six minutes; the third operating theatre had no ventilation. End-tidal samples were obtained from anaesthetists. Halothane vapour concentrations were analysed by gas-liquid chromatography. The effect of commonly used anaesthetic circuits on the level of contamination in the ambient atmosphere was studied. Concentrations of halothane vapour in the theatre atmosphere were found to vary with sampling site, anaesthetic circuit used, total gas flow and vapour concentration, the scavenging system employed and the efficiency of ventilation system.

Although the ventilation system considerably reduced the level of halothane in the operating room atmosphere, it did not totally eliminate the contaminating vapour. A significant reduction in operating-room pollution was obtained by use of simple scavenging equipment. Scavenging of anaesthetic vapours outside the operating room led to a 97.3 per cent reduction of overall mean concentration of halothane in the operating room atmosphere and reduction of 72 per cent in endtidal samples of anaesthetists, with the Magill semiclosed circuit. The implications of these findings are discussed.

Keywords

Halothane Halothane Concentration Cent Halothane Anaesthetic Vapour Anaesthetic Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

RéSUMé

La concentration d’Halothane dans l’air ambiant de trois salles d’opération et des salles d’induction attenantes, ont été déterminées au cours d’interventions chirurgicales. Dans deux des salles, un système de ventilation permettait un changement d’air complet aux six minutes; l’autre salle n’avait pas de système de ventilation. On a fait les mêmes analyses dans l’air de fin d’expiration des anesthésistes travaillant dans ces salles. On a également étudié les effets de circuits anesthésiques de type courant sur la contamination de l’air ambiant.

Les analyses ont été effectuées par méthode chromatographique. L’on a observé des variations de la concentration d’Halothane dans l’atmosphère des salles d’opération variations en fonction du site de prélèvement de l’échantillon, du genre de circuit anesthésique choisi, du débit de gaz et de la concentration de vapeur utilisés, de l’emploi d’un système de vidange des gaz (scavenging) et de l’efficacité du système de ventilation de la salle. Le système de ventilation utilisé même s’il diminue considérablement le taux d’Halothane de l’air ambiant, n’éliminait cependant pas de façon complète les vapeurs contaminantes.

L’emploi d’un système simple permettant la vidange des vapeurs anesthésiques à l’extérieur diminuait de façon significative la pollution de l’air de la salle d’opération. De tels systèmes utilisés avec un circuit Magill, permettaient de diminuer de 92.3 pour cent les concentrations d’Halothane dans l’air ambiant de la salle d’opération et de 72 pour cent les niveaux décelés dans l’air de fin d’expiration des anesthésistes. Les auteurs commentent les implications de ces données.

References

  1. 1.
    Linde, H.W. &Bruce, D.L. Occupational exposure of anaesthetists to halothane, nitrous oxide and radiation. Anesthesiology30, 363 (1969).PubMedCrossRefGoogle Scholar
  2. 2.
    Corbett, T.H., &Ball, G.L. Chronic exposure to methoxyflurane: a possible occupational hazard to anesthesiologists. Anesthesiology34, 532 (1971).PubMedCrossRefGoogle Scholar
  3. 3.
    Whitcher, C.E., Cohen, E.N., &Trudell, J.R. Chronic exposure to anesthetic gases in the operating room. Anesthesiology35, 348 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    Lassen, H.C.A., Henriksen, E., Neukirch, F., &Krstensen, H.S. Treatment of tetanus: severe bone marrow depression after prolonged nitrous oxide anaesthesia. Lancet1, 527 (1956).CrossRefGoogle Scholar
  5. 5.
    Askrog, V.F. Teratogenic effects of volatile anaesthetics. Abstract, Third European Anesthesiology Conference, Prague, No. 13/01 (1970).Google Scholar
  6. 6.
    Leucz, L., Nemes, C.S., &Berta, L. Psychische belastungen und morbidit der anaesthetisten. Abstract, Third European Anesthesiology Conference, Prague, No. 63/03 (1970).Google Scholar
  7. 7.
    Bruce, D.L., Eide, K.A., Linde, N.W., &Eckenhoff, J.E. Causes of death among anesthesiologists: a 20-year survey. Anesthesiology29, 565 (1968).PubMedCrossRefGoogle Scholar
  8. 8.
    Vaisman, A.J. Working conditions in surgery and their effect on the health of anaesthesiologists. Eksp. Khir. Anesteziol3, 44 (1967).Google Scholar
  9. 9.
    Corbett, T.H. &Ball, G.L. Respiratory excretion of halothane after clinical and occupational exposure. Anesthesiology39, 342 (1973).PubMedCrossRefGoogle Scholar
  10. 10.
    Bruce, D.L. &Whitcher, C. Exposure of operating room personnel to anesthetics. A.S.A. Workshop, Boston (1972).Google Scholar
  11. 11.
    Vaughan, R.S., Mushin, W.W., &Mapleson, W.W. Prevention of pollution of operating theatres with halothane vapours by adsorption with activated charcoal. British Medical Journal1, 727, (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    Hawkins, T.J. Atmospheric pollution in operating theatres. Anaesthesia28, 490 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    Mehta, S. Anaesthetic contamination. British Medical Journal2, 241 (1973).Google Scholar

Copyright information

© Canadian Anesthesiologists 1975

Authors and Affiliations

  • S. Mehta
    • 1
  • W. J. Cole
    • 1
  • J. Chaw
    • 1
  • K. Lewin
    • 1
  1. 1.Burnley Group of HospitalsBurnleyEngland

Personalised recommendations