Trabajos de Estadistica

, Volume 7, Issue 3, pp 295–297 | Cite as

On the variance stabilizing properties of certain logarithmic transformations

  • B. M. Bennett


Exponential Distribution Zeta Function Sample Variance Logarithmic Transformation Independent Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Se aplica la transformación logarítmica a las funciones de distribución, uniforme, exponencial y χ13, llegande en cada una de ellas a resultados interesantes, especialmerite en la uniforme, en la que además de la estabilización de la varianza se conserva la distribución normal de su media muestral.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. S. Bartlett. The use of transformations.Biometrics, 3 (1947), 39–52.CrossRefMathSciNetGoogle Scholar
  2. [2]
    M. S. Bartlett andD. G. Kendall. The statistical analysis of varianceheterogeneity and the logarithmic transformation.Suppl. J.R.S.S. 8 (1946), 128–138.MathSciNetGoogle Scholar
  3. [3]
    B. M. Bennett. Note on the moments of the logarithmic non-central χ3 and Z distributions.Ann. Inst. Stat. Math. 7 (1955), 57–61.MATHCrossRefGoogle Scholar
  4. [4]
    H. Davis. Tables of higher mathematical functions.2 (1935)Principia Press.Google Scholar
  5. [5]
    D. J. Finney. On the distribution of a variate whose logarithm is normally distributed.Suppl. J.R.S.S. 7 (1941), 155–161.MathSciNetGoogle Scholar
  6. [6]
    M. G. Kendall. Advanced theory of statistics.1 (1945), ch. 10.Google Scholar

Copyright information

© Springer 1956

Authors and Affiliations

  • B. M. Bennett
    • 1
  1. 1.University of WashingtonSeattle

Personalised recommendations