Advertisement

Trabajos de estadistica

, Volume 4, Issue 1, pp 11–34 | Cite as

Les procesus stochastiques en cascades

  • R. Fortet
Article
  • 8 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Arley:On the theory of stochastic processes and their application to the theory of cosmic radiations. 1948.Google Scholar
  2. [1]
    Bellman etHarris:On the theory of age dépendent stochastic branching processes. Proc. Nat. Acad.Sci., 34, 1948, p. 601.MATHCrossRefMathSciNetGoogle Scholar
  3. [2]
    Bellman et Harris:On the theory of age dépendent stochastic branching processes. A l’impression.Google Scholar
  4. [1]
    Everett et Ulam:Multiplicative systems in several variables, I, II, III. Los Alamos declassified documents. 1948.Google Scholar
  5. [1]
    Feller: Diffusion processes in genetics. Proc. 2nd Berkeley Symposium on Math. Stat. and Prob., p. 227.Google Scholar
  6. [2]
    Feller:On the theory of stochastic processes with particular references to applications. Proc. of the Berkeley Symposium on Math. Stat. and Prob., p. 403.Google Scholar
  7. [1]
    Galton etWatson:On the probability of the extinction of families. Journ. Anthrop. Inst. 4, 1874, p. 138.Google Scholar
  8. [1]
    Harris:Branching processes. Ann. of Math. Stat., 19, 1948, p. 474.MATHCrossRefGoogle Scholar
  9. [2]
    Harris:Branching processes. Proc. of the 2nd Berkeley Symposium on Math. Stat. and Prob., p. 305.Google Scholar
  10. [1]
    Hawkins et Ulam:Theory of multiplicative processes, I. Los Alamos declassified documest, 265, 1944Google Scholar
  11. [1]
    Janossy:Cosmic Rays. 1948.Google Scholar
  12. [1]
    Kendall:Stochastic processes and population growth. Journ. Roy. Stat. Soc., 11, 1949, p. 230.MathSciNetGoogle Scholar
  13. [2]
    Kendall:On the generalized «Birth and Death» process. Ann. of Math. Stat., 19, 1948, p. 1.MATHCrossRefMathSciNetGoogle Scholar
  14. [3]
    Kendall:Random fluctuations in the age distribution of a population whose development is controlled by the simple «Birth and Death» process. Journ. of the Roy. Stat. Soc., 12, 1950, p. 278.MATHMathSciNetGoogle Scholar
  15. [1]
    Kolmogoroff etSevas’yanov:The calculation of final probabilities for branching random process. Dok. Akad. Nauk. U.R.S.S., 56, 1947, p. 783.Google Scholar
  16. [1]
    Otter:The multiplicative processes. Ann. of Math. Stat., 20, 1949, p. 206.MATHCrossRefMathSciNetGoogle Scholar
  17. [1]
    Sebast’yanov:On the theory of branching random processes (en russe). Dok. Akad. Nauk. U.R.S.S., 59, 1948, p. 1.407.Google Scholar
  18. [1]
    Yaglom:Certain limit theorems in the theory of branching random processes (en russe), Dok. Akad. Nauk. U.R.S.S., 56, 1947, p. 795.MATHMathSciNetGoogle Scholar

Copyright information

© Springer 1953

Authors and Affiliations

  • R. Fortet

There are no affiliations available

Personalised recommendations