Advertisement

Annales des Télécommunications

, Volume 32, Issue 11–12, pp 508–513 | Cite as

Scintillation effects receiving ATS-6 at 30 GHz

  • J. Dijk
  • E. J. Maanders
  • P. J. de Winter
Session D 1 : ATS-6 Radiowave Propagation Experiments
  • 17 Downloads

Abstract

The 30 GHz signal which is received from the millimeter wave experiment on board the geostationary satellite ATS-6suffers from scintillation effects which are usually caused by refractive index fluctuations in the troposphere. The measurements show day and night differences with minima in the early morning and also differences depending on clear sky or cloudy sky. During rain the scintillations usually become smaller. Not only the copolar signal but also the crosspolar signal shows scintillation. In general, these fluctuations are larger than those of the copolar signal. A measuring set up will be shown for measuring the autocorrelation function of the scintillation signal. Knowing the autocorrelation function, the energy spectral density is known as both are a Fourier transform pair. The autocorrelation function is made visible on an oscilloscope and appears to be a function of time. By making a film the continuous changing picture of the auto correlation function is made visible.

Keywords

Heat Wave Polar Signal Energy Spectral Density Amplitude Scintillation Scintillation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Analyse

Le signal à 30 GHz reçu du satellite stationnaire expérimental ATS-6présente des scintillations qui sont produites en général par des fluctuations de l’indice de réfraction dans la troposphère. Les mesures montrent une différence entre le jour et la nuit avec un minimum au petit matin ainsi que des différences qui dépendent de la nébulosité. Pendant les pluies, les scintillations deviennent généralement plus faibles. La scintillation affecte aussi bien le signal en polarisation parallèle que celui en polarisation croisée qui présente souvent les fluctuations les plus importantes. L’auteur décrit un dispositif de mesure de la fonction d’autocorrélation du signal de scintillation. Connaissant la fonction d’autocorrélation, on en déduit la densité spectrale d’énergie, ces deux dernières formant une paire de transformées de Fourier. La fonction d’autocorrélation est observée sur un oscilloscope, ce qui permet de constater qu’elle varie en fonction du temps. A l’aide d’un film, on peut observer le changement continu de la fonction d’autocorrélation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Tatarski (V. I.). Wave propagation in a turbulent medium.McGraw-Hill, New York (1961), 285 p.Google Scholar
  2. [2]
    Lee (R. W.),Harp (J. C.). Weak scattering in random media, with applications to remote probing.Proc. I.E.E.E., U. S. A. (avr. 1969),57, n∘ 4, pp. 375–406.Google Scholar
  3. [3]
    Mandies (P. A.),Lee (R. W.),Waterman (A. T.). Spectra of short-term fluctuations of line of sight signals: electromagnetic and acoustic.Radio Sci., U. S. A. (mars 1973),8, n∘ 3, pp. 185–201.CrossRefGoogle Scholar
  4. [4]
    Van Weert (M. J. M.). The influence of frequency and receiver aperture on the scintillation noise power. AGARD-Conf. Proc. 159, pp. 12–1 à 12–10, dans Electromagnetic noise interference compatibility.NATO-AGARD, Neuilly-sur-Seine, Fr. (nov. 1975), 586 p.Google Scholar
  5. [5]
    Martinon (R.). Needs for propagation research in view of the European Communication satellites programme. Proceedings Symposium Problems of space and terrestrical Microwave Propagation, 7–9 April 1975.Graz, Austria.Google Scholar
  6. [6]
    Fante (R. L.). Electromagnetic beam propagation in turbulent media.Proc. I.E.E.E., U. S. A. (déc. 1975),63, n∘ 12, pp. 1 669–1 692.Google Scholar
  7. [7]
    Rabler (G. M.). Scintillation effects at 4 and 6 GHz on a line of sight microwave link.I.E.E.E. Trans., AP, U.S.A. (juil. 1971),19, n∘ 4, pp. 574–575.Google Scholar
  8. [8]
    Dougherty (H. T.), Button (E. J.). Estimating attenuation, scintillation and scattering due to rainfall for satellite-ground systems.AGARD, Conf. on Propagation effects on frequency study. Rome, 7–11 mai 1973.Google Scholar
  9. [9]
    Thompson (M. C.),Wood (L. E.),Smith (D.) and (J.). Phase and amplitude scintillation in the 10–40 GHz band.I.E.E.E. Trans. AP, U. S. A. (nov. 1975),23, n∘ 6, pp. 792–797.Google Scholar
  10. [10]
    Thompson (M. C.), Wood (L. E.),Smith (D.) and (J.). Phase and amplitude scintillations at 9.6 GHz on an elevated path.I.E.E.E. Trans., AP, U. S. A. (nov. 1975),23, n∘ 6, pp. 850–854.Google Scholar
  11. [11]
    Wintroub (H. J.), Hoffman (L. A.). Space communication system consideration at 94 GHz.AGARD Conf. on Telecommunication aspects on frequencies between 10 and 100 GHz, Gausdal Norway, 18–21 sep. 1972.Google Scholar
  12. [12]
    Ippolito (L. J.). ATS-6. Millimeter wave propagation and communications experiments at 20 and 30 GHzI.E.E.E. Trans., AES, U. S. A. (nov. 1975),11, n∘ 6, pp. 1 067–1 082.Google Scholar
  13. [13]
    *** ATS-6 : millimeter wave propagation experiment data report.NASA contract, n∘ NAS 5.20904 (mai 1975), prepared byWestinghouse electric corporation.Google Scholar
  14. [14]
    Dijk (J.), Maanders (E. J.). Copolar and cross-polar signals received at 30 GHz from ats-6. Paper published in this issue.Google Scholar
  15. [15]
    Bendat (J. S.), Piersol (A. G.). Random data : analysis and measurement procedures.Wiley-Interscience, New York (1971), 407 p.Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1977

Authors and Affiliations

  • J. Dijk
    • 1
  • E. J. Maanders
    • 1
  • P. J. de Winter
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations