Advertisement

Annales des Télécommunications

, Volume 32, Issue 11–12, pp 386–391 | Cite as

Numerical calculations on microwave propagation through rain

  • Paul Delogne
  • Marc Lobelle
Session C 1a : Fine Structure of Rain-Theory
  • 41 Downloads

Abstract

Calculations on transmission effects through rain are presented. Based on a special form of the radiative transfer equation treated in [1], numerical values are given for coherent propagation through a medium composed of a set of uncanted spheroidal drops, oscillating raindrops and bistatic radar scattering crosssections of rain of uncanted spheroidal drops. Calculations have been made for the range 10–100 GHz. Examples are chosen forOtsfrequency bands (11.5 and 14 GHz) and Louvainla-Neuve experimental link (12 GHz).

Keywords

Scattered Wave Radiative Transfer Equation Microwave Propagation Horizontal Polarization Incoherent Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Analyse

Des résultats de calculs de transmission à travers la pluie sont présentés. Les valeurs numériques déduites d’une forme particulière de l’équation de transfert radiatif traitée dans [1] ont été calculées pour trois modèles théoriques : propagation cohérente à travers un milieu comprenant une distribution de gouttes sphéroïdales non inclinées, même modèle pour des gouttes oscillantes, aires effectives de diffusion bistatique pour une distribution de gouttes sphéroïdales non inclinées. Les calculs ont été effectués pour la bande 10–100 GHz. Les résultats obtenus aux fréquences du satelliteOts(11,5 et 14 GHz) et des expériences effectuées à Louvain-la-Neuve (12 GHz) sont présentés.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Delogne (P.),Sobieski (P.). Fine structure of microwave cross-polarization due to precipitation.Ann. Télécommunic., Fr. (1977),31, n∘ 11-12, pp. 377–385.Google Scholar
  2. [2]
    Oguchi (T.). Attenuation of electromagnetic wave due to rain with distorted raindrops. Part I.J. Radio Res. Lab., Jap. (sep. 1960),7, n∘ 33, pp. 467–485.Google Scholar
  3. [3]
    Oguchi (T.). Attenuation of electromagnetic wave due to rain with distorted raindrops. Part II.J. Radio Res. Lab., Jap. (jan. 1964),11, n∘ 53, pp. 19–44.MathSciNetGoogle Scholar
  4. [4]
    Oguchi (T.). Attenuation and phase rotation of radio waves due to rain. Calculations at 19.3 and 34.8 GHz.Radio Sci., U. S. A. (jan. 1973),8, n∘ 1, pp. 31–38.CrossRefGoogle Scholar
  5. [5]
    Morrison (J. H.),Chu (T. S.). Perturbation calculations of rain-induced differential attenuation and differential phase shift at microwave frequencies.Bell. Syst. tech. J., U. S. A. (déc. 1973),52, n∘ 10, pp. 1 907–1 913.Google Scholar
  6. [6]
    Oguchi (T.),Hosoya (Y.). Differential attenuation and differential phase shift of radio waves due to rain: calculations of microwave and millimeter wave regions.J. Rech. Atmosph., Fr. (1974),8, n∘ 1-2, pp. 121–128.Google Scholar
  7. [7]
    Attisani (A.), Capsoni (C.), Paraboni (A.). Effects of the non spherical hydrometeors on the E.M. propagation through atmospheric precipitation.IUCRM Coll. at the fine scale structure of precipitation and E.M. Propagation, Nice (oct. 1973).Google Scholar
  8. [8]
    Oguchi (T.). Scattering properties of Pruppacher and Pitter form raindrops and cross-polarization due to rain: calculations at 11, 13, 19.3 and 34.8 GHz.Radio Sci., U. S. A. (jan. 1977),12, n∘ 1, pp. 41–51.CrossRefMathSciNetGoogle Scholar
  9. [9]
    Magono (C.). The shape of water drops falling in stagnant air.J. Meteor., U. S. A. (fev. 1954),11, n∘ 1, pp. 77–79.Google Scholar
  10. [10]
    Laws (J. O.), Parsons (D. A.). The relation of raindrop-size to intensity, Transactions.Amer. Geoph Union, Pap. Hydrology (1943), pp. 452–460.Google Scholar
  11. [11]
    Watson (P. A.),Arbabi (M.). Rainfall cross polarization at microwave frequencies.Proc. Instn electr. Engrs, G. B. (avr. 1973),120, n∘ 4, pp. 413–418.Google Scholar
  12. [12]
    Ostberg (K.). Effect of drop canting angle distribution on depolarization of microwaves in rain.FOA Rep. Nation. Defence Res. Inst., Stockholm, Sweden (1976),10, n∘ 2.Google Scholar
  13. [13]
    Saunders (M. J.). Cross-polarization at 18 and 30 GHz due to rain.I.E.E.E. Trans. AP, U. S. A. (1971),19, n∘ 2, pp. 273–277.Google Scholar
  14. [14]
    Delogne (P.), Lobelle (M.), Sobieski (P.), Van Vyve (J.). Depolarization and double polarization radiometry at 12 GHz : theoretical and experimental results. Problems of space and terrestrial microwave propagation.Proc. of a Symposium held in Graz, Austria (7–9 avr. 1975). Report ESA SP 113, pp. 229–239.Google Scholar
  15. [15]
    Delogne (P.), Osvath (P.), Sobieski (P.), Van Vyve (J.). Theory and experimental study of microwave depolarization due to rain.XVIIIth General Assembly of URSI, Lima, Peru, (août 1975).Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1977

Authors and Affiliations

  • Paul Delogne
    • 1
  • Marc Lobelle
    • 1
  1. 1.Laboratoire de télécommunications et d’hyperfréquences, bâtiment MaxwellUniversité Catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations