Advertisement

Annales Des Télécommunications

, Volume 56, Issue 1–2, pp 51–60 | Cite as

antennes Utilisant des RÉflecteurs À Motifs ImprimÉs

  • Dietmar Pilz
  • Wolfgang Menzel
Article
  • 183 Downloads

Résumé

Des structures périodiques et quasi-périodiques, imprimées sur un substrat diélectrique peuvent être employées pour commander les propriétés de réflexion et de transmission des ondes incidentes en fonction de la structure géométrique. Ceci peut être réalisé pratiquement indépendamment pour les deux polarisations. Ainsi des structures périodiques permettent la réalisation de différents types de filtres et de polariseurs. Des variations locales de la géométrie des éléments sur un substrat avec une métallisation sur la face arrière — ayant pour résultat des variations du déphasage par réflexion — peuvent être employées pour concevoir des réflecteurs à motifs imprimés (reflectarray antennas). En tenant compte des propriétés des deux polarisations pour de telles antennes, on peut construire des antennes à double fonction ou bifréquences, mais ces propriétés peuvent aussi être exploitées pour la réalisation ďantennes à réflexion indirecte (folded reflector antennas) de faible épaisseur. Des exemples ďantennes à double fonction ou bifréquences et ďantennes à réflexion indirecte à faibles pertes sont présentés.

Mots clés

Multiband antenna Antenne réflecteur Antenne imprimée Onde millimétrique Structure périodique Polarisation orthogonale Application télécommunication Antenne multibande 

Printed millimeter-wave reflectarrays

Abstract

Periodic and quasi-periodic structures printed on a dielectric substrate can be employed to control reflection and transmission properties of incident waves as a function of structure geometry. This can be done mostly independently for both polarizations. These structures thus allow the realization of different kinds of filters and polarizers. Local variation of the element geometry on a substrate with backside metallization — resulting in respective variations of the reflection phase angle — can be employed to design printed reflectarray antennas. Including the dual polarization properties of such antennas, dual function or dual frequency antennas can be built, or these properties can be exploited for the realization of compact, low-profile folded reflector antennas. Examples for a number of antennas are presented, including dual radiation characteristics, dual frequency operation, and very compact, low loss folded reflector antennas

Key words

Reflector antenna Printed antenna Millimetric wave Periodic structure Orthogonal polarization Telecommunication application 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Russell (M.E.) et al., Millimeter-wave radar sensor for automotive intelligent cruise control (ICC),ieee Trans. Microw. Theor. Techniques mtt-45 (1997), pp. 2444–2453.Google Scholar
  2. [2]
    Mansen (D.), Villino (G.), Planar Microstrip Antennas for mmds Application at 40 GHz. 28thEuropean Microw. Conf. 1999, Munich, Germany, Vol. III, pp. 9–12.Google Scholar
  3. [3]
    Sehm (T.), Lehto (A.), A.V.Räisänen (A. V.), A high-gain 58 GHz box-horn array antenna with suppressed grating lobes,ieee Transactions on Antennas and Propagation,47, n° 7, 1999, pp. 1125–1130.CrossRefGoogle Scholar
  4. [4]
    Anderson (T. N.),Michalski (J.),Hou (Yun-Li), A high power, high performance planar slot array antenna,Microw. Journal, May 1995, pp. 70–77.Google Scholar
  5. [5]
    Ando (M.) et al., Novel single-layer waveguides for high-efficiency millimeter-wave arrays,ieee Trans, on Microw. Theory Tech., mtt-46 (June 1998), pp. 792–799.Google Scholar
  6. [6]
    Dolp (R.), Mayer (W.), Grabherr (W.), 58GHz High Gain Flat Panel Antenna for High Volume Production,28th European Microw. Conf. 1999, Munich, Germany, Vol. III, pp. 12–15.Google Scholar
  7. [7]
    Mittra (R.) et al., Techniques for analyzing frequency selective surfaces — a review,Proceedings of the ieee,76 (12), pp. 1593–1615, Dec. 1988.CrossRefGoogle Scholar
  8. [8]
    Munson (R.E.),Haddad (H.A.),Hanlen (J.W.), Microstrip Reflectarray for Satellite Communication and Radar Cross-Section Enhancement or Reduction, US Patent n° 4,684,952, Sept. 24, 1982.Google Scholar
  9. [9]
    Huder (B.),Menzel (W.), Flat printed reflector antenna for mm-wave application,Electronics Lett. 1988, p. 318.Google Scholar
  10. [10]
    Guo (Y.J.), Barton (S.K.), A High-Efficiency Quarter-Wave Zone Plate Reflector,ieee Microwave and Guided Wave Letters,2, 1992, 470–471.CrossRefGoogle Scholar
  11. [11]
    Guo (Y. J.), Barton (S. K.), Fresnel Zone Plate Reflector Incorporating Rings,ieee Microw. and Guided Wave Letters,3, 1993, 417–419.CrossRefGoogle Scholar
  12. [12]
    Javor (R. D.), Wu (X.-D.), Chang (K.), Design and performance of a microstrip flat reflectarray antenna,Microwave And Optical Technology Letters,7, n° 7, May 1994, pp. 322–324.CrossRefGoogle Scholar
  13. [13]
    Menzel (W.), A planar reflector antenna,miop 1995, Sindelfin-gen, Germany, pp. 608-612.Google Scholar
  14. [14]
    Pozar (D.M.), Targonski (S.D.), Syrigos (H.D.), Design of millimeter wave microstrip reflectarrays,ieee Trans. on Antennas and Propagation, Vol. AP-45 (1997), pp. 287–96.CrossRefGoogle Scholar
  15. [15]
    Patel (M.),Thraves (J.), Design and development of a low cost, electronically steerable, X-band reflectarray using planar dipoles,Military Microwaves, 1994, pp. 174–178.Google Scholar
  16. [16]
    Bradley (J.),Cuhaci (M.),Shaker (J.),Jetté (S.),Petosa (A.), A novel bifocal dual-frequency, dual orthogonal polarization planar reflector for SatCom applications,AP2000, Davos, April 2000, Session 5A2 (paper 0774).Google Scholar
  17. [17]
    Encinar (J.A.),Zornoza (J.A.), Design and Development of Multilayer Printed Reflectarrays for Dual Polarisation and Bandwidth Enhancement,AP2000, Davos, April 2000, Session 4A9 (paper 0236).Google Scholar
  18. [18]
    Pilz (D.),Menzel (W.), Full Wave Analysis of a Planar Reflector Antenna,1997 Asia Pacific Microwave Conf. APMC’97, Dec. 2-5, 1997, Hong Kong, pp. 225–227.Google Scholar
  19. [19]
    Pilz (D.), Menzel (W.), A mixed integration method for the evaluation of the reaction integrals using the spectral domain method,ieee Proc. on Microwaves, Antennas and Propagation,146, n° 3, June 1999, pp. 214–218.CrossRefGoogle Scholar
  20. [20]
    Pilz (D.), Menzel (W.), Folded reflectarray antenna,Electron. Lett.,34, n° 9, April 1998, pp. 832–833.CrossRefGoogle Scholar
  21. [21]
    Pilz (D.), Menzel (W.), A novel linear-circular polarization converter,28th Europ. Microw. Conf., 1998, Amsterdam,2, pp. 18–23.CrossRefGoogle Scholar
  22. [22]
    Menzel (W.), Pilz (D.), Leberer (R.), A 77 GHz fm/cw radar front-end with a low-profile, low-loss printed antenna,ieee Trans. on Microw. Theory Tech.,47, n° 12 (Dec. 1999), pp. 2237–2241.CrossRefGoogle Scholar
  23. [23]
    Menzel (W.),Pilz (D.), Printed quasi-optical mm-wave antennas.Millenium Conf. on Antennas and Propagation AP2000, Davos, Switzerland, 2000, Session 3A2-1 (paper n° 0023).Google Scholar
  24. [24]
    Menzel (W.), Pilz (D.), Printed mm-wave folded reflector antennas with high gain, low loss, and low profile,ieee Antennas and Propagation Conf. 2000, Salt Lake City, USA, July 2000,2, pp 790–792.Google Scholar
  25. [25]
    Itoh (T.) (editor),Numerical Techniques For Microwave And Millimeter-Wave Passive Structures. John Wiley & Sons, 1989.Google Scholar

Copyright information

© Springer-Verlag 2001

Authors and Affiliations

  • Dietmar Pilz
    • 1
  • Wolfgang Menzel
    • 2
  1. 1.DaimlerChrysler AerospaceUlmGermany
  2. 2.Microwave TechniquesUniversity of UlmUlmGermany

Personalised recommendations