Trabajos de Estadistica

, Volume 13, Issue 3, pp 183–199 | Cite as

Some notes on the investigation of heterogeneity in interactions

  • N. L. Johnson


Probability Density Function Conditional Distribution Beta Variable Negative Binomial Joint Probability Density Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


El encontrar un resultado significativo en un problema de análisis de la varianza, entraña muchas veces la investigación posterior de la naturaleza de las diferencias indicadas por el test.

En este trabajo, el autor desarrolla una teoria de distribución útil en el análisis de interacciones en un modelo de componentes de varianza. Al final de él figuran cuatro tablas de valores de las distribuciones consideradas correspondientes a distintas hipótesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. B. Duncan, «Multiple range and multiple F tests»,Biometrics, vol. 11 (1955), pp. 1–42.CrossRefMathSciNetGoogle Scholar
  2. [2]
    A. S. C. Ehrenberg, «The umbiassed estimation of heterogeneous error variances»,Biometrika, vol. 37 (1950), pp. 347–357.MATHMathSciNetGoogle Scholar
  3. [3]
    Thomas S. Russell andRalph Allen Bradley, «One-way variances in a two-way classification»,Biometrika, vol. 45 (1958), pp. 111–129.MATHGoogle Scholar
  4. [4]
    P. C. Tang, «The power function of the analysis of variance tests with tables and illustrations of their use»,Statist. Res. Mem., vol. 2 (1938), pp. 126–149.Google Scholar
  5. [5]
    H. E. Robbins, «Mixture of distributions»,Ann. Math. Statist., vol. 19 (1948), pp. 360–369.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    T. Calinski, «O stosowaniu analizy wariancji do wynikow wielokrotnych doswiadczen odmianowych» (On the application of analysis of variance to the results of series of varietal experiments) Ph. D. Thesis, Poznan Agricultural College, 1961.Google Scholar
  7. [7]
    S. S Bose, «On the distribution of the ratio of variances of two samples drawn from a given normal bivariate correlated population»,Sankhya, vol. 2 (1935), pp. 65–72.Google Scholar
  8. [8]
    D. J. Finney, «The distribution of the ratio of estimates of the two variances in a sample from a normal bivariate population»,Biometrika, vol. 30 (1938), pp. 190–192.MATHGoogle Scholar

Copyright information

© Springer-Verlag 1962

Authors and Affiliations

  • N. L. Johnson
    • 1
  1. 1.Case Institute of TechnologyClevelandUSA

Personalised recommendations