Advertisement

Annales Des Télécommunications

, Volume 55, Issue 3–4, pp 117–130 | Cite as

Codage de maillages: application au codage de textures et de scènes 3D

  • Pierre Alliez
  • Nathalie Laurent
  • Patrick Lechat
Article
  • 73 Downloads

Résumé

Cet article examine le problème de la compression de textures et de maillages 3D. La topologie des maillages triangulaires est compressée par une méthode de conquête d’arêtes exploitant les valences des sommets, tandis que les positions des sommets sont codées par une méthode de prédiction multiple associée à un codeur arithmétique. La scalabilité est alors obtenue sur les positions via une version adaptée aux nombres flottants du codage par plans de bits. La texture appliquée au maillage 3D est quant à elle approximée par une technique hybride combinant interpolation affine et transformée DCT sur les triangles d’un modèle de maillage hiérarchique emboité.

Mots clés

Représentation tridimensionnelle Codage image Maillage Texture Scalabilité Topologie Codage prédictif Forme triangulaire Transformation cosinus Transformation discrète 

Mesh coding: Application to texture and scalable 3D scene coding

Abstract

This article examines the problem of 3D scalable mesh and texture coding. The triangular mesh topology is encoded by an edge-based conquest strategy, while positions are encoded using a multiple prediction method associated with an adaptive arithmetic coder. Moreover, scalability is obtained on the positions via a bitplane coding technique, adapted to float numbers. Then, texture is approximated by a hybrid technique mixing affine interpolation and discrete cosinus transform applied to the triangles of a hierarchical nested mesh.

Key words

Three dimensional representation Image coding Mesh Texture Scalability Topology Predictive coding Triangular shape Cosine transformation Discrete transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Algorri (M.-E.), Schmitt (F.) Mesh simplification.Computer Graphics Forum. 15, n° 3. 1996.Google Scholar
  2. [2]
    Alliez (P.), Laurent (N.), Sanson (H.), Schmitt (F.). Mesh approximation using a volume-based metric.PACIFIC GRA-PHICS’99 Conference Proceedings, Seoul, Korea. 1999.Google Scholar
  3. [3]
    Altunbasak (Y.), Murat Tekalp (A.) Scalable mesh based interpolative coding of synthetic and natural image objects,In Proc. SPiE’s Visual Comm. and Image Proc,3024, pp l004–1011, San Jose, CA-USA, Jan 1997.Google Scholar
  4. [4]
    VanBeek (P.), Murat Tekalp (A.), Ning Zhuang isil celasun, minghui XIA, Hierarchical 2d mesh representation, tracking and compression for object based video.IEEE trans. Circ. and Syst for Video tech., 9, n° 2, pp.353–369, Sept. 1999 (special issue).CrossRefGoogle Scholar
  5. [5]
    Campagna (S.), Kobbelt (L.), Seidel (H.-P.). Enhancing digital documents by including 3D-raodels.SIGGRAPH 98 Conference Proceedings. Google Scholar
  6. [6]
    Cignoni (P.), Rocchini (C), Scopigno (R.). Metro: measuring error on simplified surfaces.Computer Graphics Forum. Istituto I.E.I - C.N.R. Pisa, Italy. 1998.Google Scholar
  7. [7]
    Cohen (J.), Olano (M.), Manocha (D.). Appearance-preserving simplification.SIGGRAPH 98 Conference Proceedings. Google Scholar
  8. [8]
    Cohen (J.), Varshney (A.), Manocha (D.), Turk (G.), Weber (H.), Agarwal (P.), Brooks (F.), Wright (W.) Simplification envelopes.SIGGRAPH 96 Conference Proceedings. Google Scholar
  9. [9]
    Deering (M.). Geometry compression.SIGGRAPH 95 Conference Proceedings. Google Scholar
  10. [10]
    Donescu (I.), Sikora (T.), Chen (H.). Texture coding on arbitrary shaped image segments: transform methods.Ann. télécommunic,53, n° 5-6, pp.19–191, 1998.Google Scholar
  11. [11]
    Eck (M.), DeRose (T.), Duchamp (T.), Hoppe (H.), Lounsbery (M.) Stuetzle (W.). Multiresolution analysis of arbitrary meshes.SIGGRAPH 95 Conference Proceedings. Google Scholar
  12. [12]
    Garland (M.), Heckbert (P.). Surface simplification using quadric error metrics.SIGGRAPH 97 Conference Proceedings. Google Scholar
  13. [13]
    Gilge (M.), Engelhart (T.), Mehlan (R.). Coding of arbitrary shaped image seegments based on a generalized orthogonal transform.Signal Processing: Image Communication, 1, pp. 153–180, 1989.CrossRefGoogle Scholar
  14. [14]
    Gumhold (S.), Strasser (W.). Real time compression of triangle mesh connectivity.SIGGRAPH 98 Conference Proceedings. Google Scholar
  15. [15]
    Hoppe (H.). Progressive meshes.SIGGRAPH 96 Conference Proceedings. Google Scholar
  16. [16]
    Kauff (P.), Schüür (K.), Shape adaptive dct with block based DC separation and δ DC correction,IEEE trans. Circ. and syst. For video Tech.,8, n° 3, pp. 237–242, June 1998.CrossRefGoogle Scholar
  17. [17]
    Klein (R.), Liebich (G.), Strasser. (W.) Mesh reduction with error control.ACM Visualization 96. Google Scholar
  18. [18]
    Lebuhan Jordan (C), Ebrahimi (T.), Kunt, (M.) Progressive mesh-based coding of arbitrary-shaped video objects.In proc. SPIE’s Visual Comm. and Image Proc, 3653, pp. 1190–1201, San Jose, CA-USA, Jan 1999.Google Scholar
  19. [19]
    Lebuhan Jordan. (C.) Progressive geometrical compression of arbitrary shaped video objets,PhD thesis, EPFL, Lausanne-Suisse,1998. Google Scholar
  20. [20]
    Lechat (P.), Laurent (N.), Sanson (H.), Scalable image coding with fine granularity based on hierarchical mesh.In proc. SPIE’s Visual Comm. And Image Proc.,3653, pp. 1130–1142, San Jose, CA-USA, Jan 1999.Google Scholar
  21. [21]
    Li (J.) Jay Kuo, (C.-C.) Progressive coding of 3D graphic models.IEEE Computer Graphics. (June 1998), 86, pp. 1052–1063.Google Scholar
  22. [22]
    Lindstrom (P.), Greg Turk (G.) Fast and memory efficient polygonal simplification.IEEE Visualization Conference Proceedings. 1998.Google Scholar
  23. [23]
    Rossignac (J.), Borrel (P.). Multi-resolution 3D approximations for rendering complex scenes.IBM Research Report RC 17697 (77951). 1992.Google Scholar
  24. [24]
    Schröeder (W.), Zarge (J.), Lorensen (W.). Decimation of triangle meshes.SIGGRAPH 92 Conference Proceedings.Google Scholar
  25. [25]
    Sikora (T.), Makai (B.), Shape adaptive dct for generic coding of video.IEEE Trans. Circ. And Syst. For video tech., 5, n° 3, pp. 59–62, Feb. 1995.CrossRefGoogle Scholar
  26. [26]
    Taubin (G.), Guéziec (A.), Horn (W.), Lazarus (F.). Progressive forest split compression.SIGGRAPH 98 Conference Proceedings. 1998.Google Scholar
  27. [27]
    Taubin (G.), Horn (W), Lazarus (F.), Rossignac (J.). Geometry coding and vrml. RR 20925. 1997.IBM T.J. Watson Research Center.Google Scholar
  28. [28]
    Taubin (G.), Rossignac (J.), Deering (M.), Hoppe (H.), Schröeder (P.) Seidel (H.-P.). 3D geometry compression.Course notes. SIGGRAPH. 1998.Google Scholar
  29. [29]
    Touma (C), Gotsman (C). Triangle mesh compression.INTERFACE 98 Conference Proceedings. 1998.Google Scholar
  30. [30]
    Wang (Y.), Lee (O.) Vetro (A.). Use of two dimensional deformable mesh structures for video coding, part II — the analysis problem and a region-based coder employing an active mesh representation.IEEE Transaction Circuits Systems Video Systems Tech. 6, n° 6, pp. 647–659, dec 1996.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  1. 1.France Telecom R&d/dih/hdmCesson-Sévigné CedexFrance

Personalised recommendations