Annales Des Télécommunications

, Volume 58, Issue 9–10, pp 1459–1484 | Cite as

Fiber optic applications of multiple quantum well electroabsorption modulators

  • Abderrahim Ramdane
  • Fabrice Devaux
  • Nayla El Dahdah
  • Guy Aubin


Electroabsorption modulators (eam) have proved to be very attractive both as optical sources (monolithically integrated NRZ transmitters andrz pulse generators) as well as for very fast signal processing (demultiplexing, regeneration, wavelength conversion,...).

Their design criteria, technology and implementation in future networks are reviewed, and the main issues are discussed.

Key words

Optical modulator Electroabsorption Multiple quantum well Optical fiber transmission Telecommunication application Electrooptical effect High rate Optical source Integration Ultrashort pulse Signal processing 

Le Modulateur à Électro-Absorption à Base de Multi-Puits Quantiques: Application Aux Télécommunications sur Fibre Optique


Les modulateurs à électro-absorption (mea) ont trouvé de nombreuses applications dans le domaine des télécommunications optiques. Initialement développés pour la modulation externe de type NRZ et la génération d’impulsionsrz, ils se sont avérés très intéressants pour la réalisation d’autres fonctions optiques telles que que le démultiplexage, la régéneration ou la conversion de longueur d’onde à très haut débit.

Cet article fait le point sur leur conception, leur fabrication et leur intégration potentielle dans les futures réseaux optiques.

Mots clés

Modulateur optique Electroabsorption Puits quantique multiple Transmission fibre optique Application télécommunication Effet électrooptique Haut débit Source optique Intégration Impulsion ultracourte Signal processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bigan (E.), Allovon (M.), Carre (M.), Braud (C.), Carenco (A.), Voisin (P.), Optimization of optical waveguide modulators based on Wannier-Stark localization: an experimental study,IEEE J. Quantum Electron., (1992),28, pp. 214–223.CrossRefGoogle Scholar
  2. [2]
    Mircea (A.), Ougazzaden (A.), Primot (G.), Kazmierski (C.), Highly thermally stable, high performance InGaAsP:InGaAsP MQW structures for optical devices by atmospheric pressure MOVPE,J. Crystal Growth, (1992),124, pp. 737–740.CrossRefGoogle Scholar
  3. [3]
    Suzuki (M.), Tanaka (H.), Akiba (S.), Kushiro (Y.), Electrical and optical interactions between integrated InGaAsP/InP DFB lasers and electroabsorption modulators,J. Lightwave Technol., (1988),6, pp. 779–785.CrossRefGoogle Scholar
  4. [4]
    Whalen (M.S.), Wood (T.H.), Miller (B.I.), Koren (U), Burrus (C.A.), Raybon (G.), Variation of frequency chirp with wavelength in an InGaAsP/InP multiple quantum well (MQW) waveguide electroabsorption modulator,IEEE Photon. Technol. Lett., (1991),3, pp. 451–452.CrossRefGoogle Scholar
  5. [5]
    Devaux (F.), Chelles (S.), Ougazzaden (A.), Mircea (A.), Harmand (J.C.), Electroabsorption modulators for high bit-rate optical communications: a comparison of strained InGaAs/InGaAl and InGaAsP/InGaAsP MQW,Semiconduct. Sci. Technol., (1995),10, pp. 887–901.CrossRefGoogle Scholar
  6. [6]
    Devaux (F.), Souli (N.), Ougazzaden (A.), Huet (F.), Carre (M.), High speed tandem of MQW modulators for coded pulse generation with 14 dB fiber-to-fiber gain,IEEE Photon. Technol. Lett., (1996),8, pp. 218–220.CrossRefGoogle Scholar
  7. [7]
    Wakita (K.), Kotaka (I.), Yoshino (K.), Kondo (S.), Nogushi (Y.), Polarization-independent electroabsorption modulators using strain-compensated InGaAs/InAlAs MQW structures,IEEE Photon. Technol. Lett., (1995),7, pp. 1418–1420.CrossRefGoogle Scholar
  8. [8]
    Ramdane (A.), Devaux (F.), Souli (N.), Delprat (D.), andOugazzaden (A.), Monolithic integration of multiple-quantum-well lasers and modulators for high-speed transmission,IEEE J. Selected Topics in Quantum Electron., (1996),2, pp. 326–335.CrossRefGoogle Scholar
  9. [9a]
    Kawamura (Y.), Wakita (K.), Yoshikuni (Y.), Itaya (Y.), Asahi (H.), Monolithic integration of a DFB laser and an MQW optical modulator in the 1.5 µm range,IEEE J. Quantum Electron., (1987),QE-23, pp. 915–918.CrossRefGoogle Scholar
  10. [9b]
    Kuindersma (P.I.), Mols (P.P.G.), V. D. Hofstad (G.L.A.), Cuypers (G.), Tomesen (N.), v. Dongen (T.), Binsma (J.J.A.), Packaged, integrated DFB/EA-MOD for repeaterless transmission of 10 Gbit/s over 107 km standard fiber,Electron. Lett., (1993),29, pp. 1876–1878.CrossRefGoogle Scholar
  11. [10]
    Sato (K.), Kotaka (I.), Wakita (K.), Kondo (Y.), Yamamoto (M.), Strained InGaAsP MQW electroabsorption modulator integrated DFB laser,Electron. Lett., (1993),29, pp. 1087–1091.CrossRefGoogle Scholar
  12. [11]
    Aoki (M.), Suzuki (M.), Sano (H.), Kawano (T.), Ido (T.), Taniwatari (T.), Uomi (K.), Takai (A.), InGaAs/InGaAsP MQW electroabsorption modulator integrated with a DFB laser fabricated by band-gap energy control selective-area MOCVD,IEEE J. Quantum Electron., (1993),29, pp. 2088–2096.CrossRefGoogle Scholar
  13. [12]
    Yamazaki (H.),Sakata (Y.),Yamaguchi (M.),Inomoto (Y.), andKomatsu (K.), Low-drive voltage (1.5 Vpp) and high powerdfb-ld/modulator integrated light sources by bandgap energy controlled selective MOVPE,Tech.Dig. 21 st Eur. Conf. Optical Communication (ECOC’95), Brussels, Belgium, (1995), pp. 897–900.Google Scholar
  14. [13]
    Kudo (K.), Ishizaka (M.), Sasaki (T.), Yamazaki (H.) andYamaguchi (M.), Different-wavelength modulator-integrated DFB/LDS fabricated on a single wafer,Tech. Dig. 23rd Eur. Conf. Optical Communication (ECOC’97), Edinburgh, (1997),5, pp. 49–52.Google Scholar
  15. [14]
    Ramdane (A.), Krauz (P.), Rao (E.V.K.), Hamoudi (A.), Ougazzaden (A.), Robein (D.), Gloukhian (A.), Carre (M.), Monolithic integration of InGaAsP/InP strained layer distributed feedback laser and external modulator by selective quantum well interdiffusion,IEEE Photon. Technol. Lett., (1995),7, pp. 1016–1018.CrossRefGoogle Scholar
  16. [15]
    Ramdane (A.), Ougazzaden (A.), Devaux (F.), Delorme (F.), Schneider (M.) Landreau (J.), Very simple approach for high performance DFB laser-electroabsorption modulator monolithic integration,Electron. Lett., (1994),30, pp. 1980–1981.CrossRefGoogle Scholar
  17. [16]
    Ramdane (A.), Meichenin (D.), Vergnol (E.), Sik (H.), Ougazzaden (A.), Tunable distributed Bragg reflector laser-electroabsorption modulator based on the identical active layer monolithic integration approach,Electron. Lett., (1999),35, pp. 1637–1639.CrossRefGoogle Scholar
  18. [17]
    Salvatore (R.A.), Sahara (R. T.), Bock (M. A.), Libenzon (I.), Electroabsorption modulated laser for long transmission spans,IEEE J. of Quantum Electron., (2002),38, pp. 464–476.CrossRefGoogle Scholar
  19. [18]
    Ramdane (A.),Delprat (D.),Devaux (F.)Mathoorasing (D.),Ougazzaden (A.),Souli (N.),Delorme (F.),Landreau (J.), Multiple quantum well distributed feedback laser-electroabsorption modulator light source with a 36 GHz bandwidth,Proceedings Conference on Lasers and Electro-Optics CLEO Pacific Rim ’95, Chiba, (1995), pp. 222.Google Scholar
  20. [19]
    Takeuchi (H.), Tsuzuki (K.), Sato (K.), Yamamoto (M.), Itaya (Y.), Sano (A.), Yoneyama (M.), Otsuji (T.), Very high speed light-source module up to 40 Gbit/s containing an MQW electroabsorption modulator integrated with a DFB laser,IEEE J. of Selected Topics in Quantum Electronics, (1997),3, pp. 336–343.CrossRefGoogle Scholar
  21. [20a]
    Kawano (K.), Kohtoku (M.), Ueki (M.), Ito (T.), Kondoh (S.), Noguchi (Y.), Hasumi (Y.), Polarisation-insensitive travelling-wave electrode electroabsorption (TW-EA) modulator with bandwidth over 50 GHz and driving voltage less than 2V,Electron. Lett., (1997),33, pp 1580–1581.CrossRefGoogle Scholar
  22. [20b]
    Li (G.L.), Pappert (S.A.), Mages (P.), Sun (C.K.), Chang (W.S.C.), Yu (P.K.L.), High-saturation high-speed travelling-wave InGaAsP-InP electroabsorption modulator,IEEE Photonics Technology Letters, (2001),13, pp. 1076–1078.CrossRefGoogle Scholar
  23. [21]
    Yamanaka (T.), Ultrafast electroabsorption modulators with travelling-wave electrodes,Proceedings of 27 th European Conference on Optical Communications, ECOC’2001, Amsterdam, (2001), paper We F.3.1.Google Scholar
  24. [22]
    Fells (J.A.J.), Gibbon (M.A.), White (I.H.), Thompson (G.H.B.), Penty (R.V.), Armistead (C.J.), Kimber (E.M.), Moule (D.J.), Thrush (E.J.), Transmission beyond the dispersion limit using a negative chirp electroabsorption modulator,Electron. Lett., (1994),33, pp. 1168–1169.CrossRefGoogle Scholar
  25. [23]
    Delprat (D.), Ramdane (A.), Ougazzaden (A.), Nakajima (H.), Carre (M.), Integrated multiquantum well distributed feedback laser-electroabsorption modulator with a negative chirp for zero bias voltage,Electron. Lett., (1997), 33, pp. 53–55.CrossRefGoogle Scholar
  26. [24]
    Fells (J.A.J.), Gibbon (M.A.), Thompson (G.H.B.), White (I.H.), Penty (R.V.), Wright (A.P.), Saunders (R.A.), Armistead (C.J.), Kimber (E.M.), Chirp and system performance of integrated laser modulators,IEEE Photonics Technology Letters, (1995),7, pp. 1279–1281.CrossRefGoogle Scholar
  27. [25]
    Morito (K.), Sahara (R.), Sato (K.), Kotaki (Y.), Penalty-free 10 Gbit/s NRZ transmission over 100 km of standard fiber at 1.55 µm with a blue-chirp modulator integrated DFB laser,IEEE Photon. Technol. Lett., (1996),8, pp. 431–433.CrossRefGoogle Scholar
  28. [26]
    Delprat (D.), Ramdane (A.), Ougazzaden (A.), Morvan (M.), Sorel (Y.), High performance DFB laser-electroabsorption modulator based on the identical active layer approach and application to 10 Gbit/s transmission over 125 km of standard fiber,Proceedings of 23rd European Conference on Optical Communication (ECOC’97), Edinburgh, (1997),1, pp. 167–170.Google Scholar
  29. [27]
    Park (Y.K.), Nguyen (T.V.), Morton (P.A.), Johnson (J.E.), Mizuhara (O.), Jeong (J.), Tzeng (L.D.), Yeates (P.D.), Fullowan (T.), Sciortino (P.F.), Sergent (A.M.), Tsang (W.T.), Yadvish (R.D.), Dispersionpenalty-free transmission over 130 km satandard fiber using a 1.55 µm, 10 Gb/s integrated EA/DFB laser with low-extinction ratio and negative chirp,IEEE Photonics Technology Letters, (1996),8, pp 1255–1257.CrossRefGoogle Scholar
  30. [28]
    Suzuki (M.), Tanaka (H.), Utaka (K.), Edagawa (N.), Matsushima (Y.), Transform-limited 14 ps optical pulse generation with 15 GHz repetition rate by an InGaAsP electroabsorption modulator,Electron. Lett., (1992),28, pp. 1007–1008.CrossRefGoogle Scholar
  31. [29]
    Yamada (E.), Wakita (K.), Nakazawa (M.), 30 GHz pulse train generation from a multiquantum well electroabsorption intensity modulator,Electron. Lett., (1993),29, pp. 845–847.CrossRefGoogle Scholar
  32. [30]
    Moodie (D.G.), Harlow (M.J.), Guy (M.J.), Perrin (S.D.), Ford (C.W.), Robertson (M.J.), Discrete electroabsorption modulators with enhanced modulation depth,J. of Lightwave Technology, (1996),14, pp. 2035–2043.CrossRefGoogle Scholar
  33. [31]
    Moodie (D.G.), Ellis (A.D.), Ford (C.W.), generation of 6.3 ps optical pulses at a 10 GHz repetition rate using a packaged electroabsorption modulator and dispersion compensating fiber,Electron. Lett., (1994),30, pp. 1700–1701.CrossRefGoogle Scholar
  34. [32]
    Suzuki (K.), Iwatsuki (K.), Nishi (S.), Saruwatari (M.), Sato (K.), Wakita (K.), 2.5 ps soliton pulse generation at 15 GHz with monolithically integrated MQW-DFB-LD/MQW_EA modulator and dispersion decreasing fibre,Electron.Lett., (1993),29, pp. 1713–1714.CrossRefGoogle Scholar
  35. [33]
    Guy (M.J.), Chernikov (S.V.), Taylor (J.R.), Moodie (D.G.), Kashyap (R.), 200fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,Electron.Lett., (1995),31, pp. 740–741.CrossRefGoogle Scholar
  36. [34]
    Taga (H.), Suzuki (M.), Edagawa (N.), Tanaka (H.), Yoshida (Y.), Yamamoto (S.), Akiba (S.), Wakabayachi (H.), Multi-thousand kilometer optical soliton data transmission experiments at 5 Gbit/s using an electroabsorption modulator pulse generator,J. Lightwave Technol., (1994),12, pp. 231–235.CrossRefGoogle Scholar
  37. [35]
    Tanaka (H.), Takagi (S.), Suzuki (M.), Matsushima (Y.), Optical short pulse generation and data modulation by a single-chip InGaAsP tandem-integrated electroabsorption modulator (TEAM),Electron. Lett., (1993),29, pp. 1002–1004.CrossRefGoogle Scholar
  38. [36]
    Devaux (F.), Muller (S.), Ougazzaden (A.), Mircea (A.), Ramdane (A.), Krauz (P.), Semo (J.), Huet (F.), Carre (M.), Carenco (A.), Zero-loss multiple quantum well electroabsorption modulator with very low chirp,Appl. Phys. Lett., (1994),64, pp. 954–956.CrossRefGoogle Scholar
  39. [37]
    Souli (N.), Devaux (F.), Ramdane (A.), Krauz (P.), Ougazzaden (A.), Huet (F.), Carre (M.), Sorel (Y.), Kerdiles (J.F.), Henry (M.), Aubin (G.), Jeanny (E.), Montallant (T.), Moulu (J.), Nortier (B.), Thomine (J.-B.), 20 Gbit/s high performance integrated MQW tandem modulators and amplifier for soliton generation and coding,IEEE Photon. Technol. Lett., (1995),7, pp. 629–631.CrossRefGoogle Scholar
  40. [38]
    Devaux (F.), Souli (N.), Ougazzaden (A.), Huet (F.), Carre (M.), High speed tandem of MQW modulators for coded pulse generation with 14 dB fiber-to-fiber gain,IEEE Photon. Technol. Lett., (1996),8, pp. 218–220.CrossRefGoogle Scholar
  41. [39]
    Aubin (G.), Jeanny (E.), Montallant (T.), Moulu (J.), Pirio (F.), Thomine (J.-B.), Devaux (F.), Souli (N.), Record 20 Gbit/s-200 km repeater span transoceanic soliton transmission using in-line remote pumping,IEEE Photon. Technol. Lett., (1996),8, pp. 1267–1269.CrossRefGoogle Scholar
  42. [40]
    Mason (B.), Ougazzaden (A.), Lentz (C.W.), Glogovsky (K.G.), Reynolds (C.L.), Przybylek (G.J.), Leibenguth (R.E.), Kercher (T.L.), Boardman (J.W.), Rader (M.T.), Greary (J.M.), Walters (F.S.), Peticolas (L.J.), Freund (J.M.), Chu (S.N.G.), Sirenko (A.), Jurchenko (R.J.), Hybertsen (M.S.), Ketelsen (L.J.P.), Raybon (G.), 40 Gb/s tandem electroabsorption modulator,IEEE Photon.Technol. Lett, (2002),14, pp. 27–29.CrossRefGoogle Scholar
  43. [41]
    Suzuki (M.), Tanaka (H.), Matsushima (Y.), Application of a λ/4 shifted DFB laser/electroabsorption modulator monolithically integrated light source to single-chip pulse generator with variable repetition rate,IEEE Photon.Technol. Lett., (1992),4, pp. 1129–1131.CrossRefGoogle Scholar
  44. [42]
    Sato (K.), Wakita (K.), Kotaka (I.), Kondo (Y.), Yamamoto (M.), Multi-section electroabsorption modulators integrated with distributed feedback lasers for pulse generation coded at 10 Gbit/s,Electron. Lett., (1994),30, pp. 1144–1145.CrossRefGoogle Scholar
  45. [43]
    Souli (N.), Ramdane (A.), Devaux (F.), Ougazzaden (A.), Slempkes (S.), Tandem of electroabsorption modulators integrated with DFB laser and optical amplifier for short optical pulse generation and coding,IEEE Proceedings Optoelectronics, (1998),145, pp. 198–200.CrossRefGoogle Scholar
  46. [44]
    Martin (G.),Vergnol (E.),Aubin (G.),Carenco (A.),Ramdane (A.), Short optical pulse generation at 20 GHz repetition rate using integrated laser-modulators-amplifier,Proceedings of 26 th European Conference on Optical Communications, ECOC’2000, Munich,2, pp. 53–55.Google Scholar
  47. [45]
    Suzuki (M.), Tanaka (H.), Edagawa (N.), Matsushima (Y.), New applications of a sinusoidally driven InGaAsP electroabsorption modulator to in-line optical gates with ASE noise reduction effect,J. of Lightwave Technol., (1992),10, pp. 1912–1918.CrossRefGoogle Scholar
  48. [46]
    Moodie (D.G.), Ellis (A.D.), Thurlow (A.R.), Harlow (M.J.), Lealman (I.F.), Perrin (S.D.), Rivers (L.J.), Roberetson (M.J.), Multiquantum well electroabsorption modulators for 80 Gbit/s OTDM systems,Electron. Lett., (1995),31, pp. 1370–1371.CrossRefGoogle Scholar
  49. [47]
    Kaman (V.), Bowers (J.E.), 120 Gbit/s OTDM system using electroabsorption transmitter and demultiplexer operating at 30 GHz,Electron. Lett., (2000),36, pp. 1477–1479.CrossRefGoogle Scholar
  50. [48]
    Aubin (G.), Montalant (T.), Moulu (J.), Pirio (F.), Thomine (J.-B.), Devaux (F.), 40 Gbit/s OTDM soliton transmission over transoceanic distances,Electron. Lett., (1996),32, pp. 2188–2189.CrossRefGoogle Scholar
  51. [49]
    Leclerc (O.), Dany (B.), Rouvillain (D.), Brindel (P.), Desurvire (E.), Duchet (C.), Shen (A.), Devaux (F.), Coquelin (A.), Goix (M.), Bouchoule (S.), Fleury (L.), Nouchi (P.), Simultaneously regenerated 4 × 40 Gbit/s denseWDM transmision over 10 000 km using InP Mach-Zehnder modulator,Electron. Lett., (2000),36, pp. 1574–1575.CrossRefGoogle Scholar
  52. [50]
    Edagawa (N.), Suzuki (M.), Yamamoto (S.), Novel wavelength converter using electroabsorption modulator,IEICE Trans. Electron., (1998),E81-C, 8, pp. 1251–1257.Google Scholar
  53. [51]
    Otani (T.), Miyazaki (T.), Yamamoto (S.), 40 Gbit/s optical 3R regenerator using electroabsorption modulators for optical networks,J. Lightwave Technology, (2002),20, pp. 195–2000.CrossRefGoogle Scholar
  54. [52]
    Shimomura (K.),Shimizu (K.),Ishida (K.),Sugihara (T.),Kobayashi (Y.), A simple optical demultiplexing method using saturable absorption ofea modulator,Proceedings of 26 th European Conference on Optical Communications, ECOC’2000, Munich,3, pp. 305–307.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Abderrahim Ramdane
    • 1
  • Fabrice Devaux
    • 2
  • Nayla El Dahdah
    • 1
  • Guy Aubin
    • 1
  1. 1.CNRS/Laboratoire de Photonique et de NanostructuresMarcoussisFrance
  2. 2.Opto+, Alcatel R&I, Route de NozayMarcoussisFrance

Personalised recommendations