Advertisement

Annales Des Télécommunications

, 58:1378 | Cite as

Liquid crystal-based optical space switches fordwdm networks

  • Philippe Gravey
  • Jean -Louis de Bougrenet de la Tocnaye
  • Bruno Fracasso
  • Nicole Wolffer
  • Antoine Tan
  • Bruno Vinouze
  • Mustapha Razzak
  • Amal Kali
Article
  • 67 Downloads

Abstract

This paper addresses the issue of using conventional liquid crystal materials as reconfigurable holographic or diffractive phase elements within optical space switches and the resulting constraints in their choice and use in a telecommunication environment. We discuss the advantage of this technology for implementing holographic-based approaches with respect to other techniques. As an illustration we give two examples which illustrate two generic architectures and complementary use of liquid crystal to implement them. Finally, we give some trends on implementations of high channel capacity space switches based on this technology.

Key words

Optical switch Space division switching Liquid cristal device Wavelength division multiplexing Nematic Smectic Phase modulation Blazed grating Optical modulator Holography 

Commutateurs Optiques Spatiaux à Cristaux Liquides Pour Les Réseaux à Multiplexage en Longueur D’Onde

Résumé

Cet article traite de l’utilisation de cristaux liquides pour la génération de structures diffractives de phase au sein de commutateurs optiques spatiaux. Nous discutons des problèmes posés par leur application aux télécommunications et soulignons les avantages de cette approche par rapport à d’autres techniques. Nous présentons ensuite deux exemples de réalisation mettant en oeuvre des architectures optiques et des types de cristaux liquides différents. Finalement, nous décrivons les évolutions techniques nécessaires au développement de systèmes de grande capacité à partir de cette technologie.

Mots clés

Commutateur optique Commutation spatiale Dispositif cristal liquide Multiplexage longueur onde Nématique Smectique Modulation phare Réseau blazé Modulateur optique Holographie 

References

  1. [1]
    Ranganathan (R.),et al., “Benefits of grooming capable cross-connects in a Pan-european Optical Network”, Proc. ecoc 2001 (Amsterdam), MoL.2.2.Google Scholar
  2. [2]
    Noguchi (K.),Kawakkali (W.), “Optical digital cross-connect system from broadbandWDM network configuration using LC optical multichannel switches”, ProcECOC Brussels (1995), pp. 127–129.Google Scholar
  3. [3]
    Hironishi (K.),Nishi (T.),Maeda (T.),Kuroyonagi (S.), “4×4pi-loss Topology based free-space switch for optical cross-connect systems”, Proc.ECOC ’95 (Brussels, Sept. 1995), pp. 123–126.Google Scholar
  4. [4]
    Ryf (R.)et al., “Multiservice optical node based on low loss optical-cross-connect MEMS switch”, Proc.OFC 2002 (Anaheim), ThE3.Google Scholar
  5. [5]
    Mears (R.J.) et al., “Telecommunications applications of FLC smart pixels”,IEEE Quantum Elec. 2, pp. 35–46, 1996.CrossRefGoogle Scholar
  6. [6]
    De Gennes (P.G.),Prost (J.), “The physics of the liquid crystals”Oxford University press 1994.Google Scholar
  7. [7]
    Clark (N.A.), Lagerwall (S.) “Liquid crystals of one or two dimensional order”Springer Verlag, Berlin, pp. 222–236, 1980.Google Scholar
  8. [8]
    Lu (K.), Saleh (B.E.A.), “Complex amplitude reflectance of the liquid, crystal light valve”,Applied Optics,26, pp. 2354–2362, 1991.CrossRefGoogle Scholar
  9. [9]
    De Bougrenet De La Tocnaye (J.L.), Dupont (L.), “Complex amplitude modulation by use of liquid crystal spatial light modulators”Applied Optics,36, pp. 1730–1741, 1998.Google Scholar
  10. [10]
    Walba (D.), Dyer (D.J.), Shao (R.), Clark (N.A.), Kundakila More (R.T.), Thurnes (W.N.), Wand (M.D.), “High performance electroclinic material”,Ferroelectrics,148, pp. 435–442, 1993.Google Scholar
  11. [11]
    Redmond (M.), Coles (H.), Wisherhoff (E.), Zentel (R.), “Ferroelectric and electroclinic characterization of a new organic siloxane bimesogen”,Ferroelectrics,148, pp. 323–336, 1993.Google Scholar
  12. [12]
    Vinouze (B.), Gravey (P.), Wolffer (N.), Lelah (A.), “Optical switches for cross-connects using high efficiency nematic liquid crystal gratings”,SPIE 362 “Optoelectronic interconnects VI”, pp. 161–172 (1999)CrossRefGoogle Scholar
  13. [13]
    Wolffer (N.) et al, “8×8 Holographic liquid crystal switch”,ECOC 2000,III, pp. 275–276.Google Scholar
  14. [14]
    Tan (A.) et al, “Improvement of response time of electrically addressed nematic crystal blazed gratings”, in Proc. Optics in computing. 2000,SPIE,4089, pp. 208–218 (2000).CrossRefGoogle Scholar
  15. [15]
    Dozov (I.) et al. “Fast bistable nematic display from coupled surface anchoring breaking”, SPIE Vol. 3015, pp. 61–69, 1999.CrossRefGoogle Scholar
  16. [16]
    Warr (S.T.), Mears (R.J.), “Polarisation insensitive operation of ferroelectric liquid crystal devices”,Electronics Letters,31, pp. 714–716, 1995.CrossRefGoogle Scholar
  17. [17]
    Berthelé (P.) et al., “Single-mode fibre optical switch using a polarisation insensitive liquid crystal spatial light modulator”Applied Optics,37, pp. 5461–5468, 1998.CrossRefGoogle Scholar
  18. [18]
    Crossland (W.A.) et al., “Beam steering optical switches usingLcos: the ‘Roses’ demonstrator”,IEE electronics and communications meeting, London, 17 march 2000.Google Scholar
  19. [19]
    Fracasso (B.),De Bougrenet de la Tocnaye (J-.L.),Razzak (M.),Uche (C.), “Design and performance of a holographic liquid crystal wavelength selective optical switch”, submitted toIEEE Journal of Lightwave Technology.Google Scholar
  20. [20]
    Fracasso (B.) et al. “Performance assessment of a liquid crystal multichannel photonic space-switch”,Photonics in Switching 2001, Technical Digest, Monterey, June 2001, pp. 24–26.Google Scholar
  21. [21]
    Yamazaki (H.) et al., “Large scale holographic switch with a FLC SLM”,Ferroelectrics,231, pp. 225–232, 1998.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Wilkinson (T.D.) et al., High Tilt angle ferroelectric liquid crystal spatial light modulator for optical interconnects, IEE electronics and communications meeting, London, 17 march 2000.Google Scholar
  23. [23]
    Ranalli (A.R.),Bradley (A.S.),Kondis (J.P.), “Liquid crystal based wavelength selectable cross-connect”, Proc.ECOC ’99, pp. 68–69, Nice 1999.Google Scholar
  24. [24]
    Rhee (S.) et al. “Variable pass-band optical add-drop multiplexer using wavelength selective switch”, Proc.ECOC 01, Amsterdam, October 2001, pp. 550–551.Google Scholar
  25. [25]
    Lelah (A.) et al., “A CMOS VLSI Pilot and Support Chip for a Liquid Crystal on Silicon 8×8 Optical Cross-Connect”, Wave Optics and VLSI Photonic Devices for Information Processing,ECOC,4435, pp. 173–183, 2001.Google Scholar
  26. [26]
    www.threefive.comGoogle Scholar
  27. [27]
    http://www.jvc-victor.co.jp/english/pro/dila/device.htmlGoogle Scholar
  28. [28]
    http://www.crlopto.com/products/index.phpGoogle Scholar
  29. [29]
    Davis (J.A.) et al, “Polarization eigen-states for twisted-nematic liquid-crystal displays”,Applied Optics, No. 5. February 1998.Google Scholar
  30. [30]
    Tan (A.), PhD dissertation, Université de Bretagne Occidentale, May 2002.Google Scholar
  31. [31]
    Johansson (M.), Hard (S.), Robertson (B.), Manolis (I.), Wilkinson (T.), Crossland (W.A.), “Adaptative beam sttering implemented in a FLCSLM free-space fibre optical switch”,Applied Optics,41, pp. 4904–4911, 2002.CrossRefGoogle Scholar
  32. [32]
    Sasian (J.M.) et al., Opt. Eng.,33, 2979–2985, 1994.CrossRefGoogle Scholar
  33. [33]
    Chanclou (P.), Gravey (P.), Bonnel (L.), Thual (M.), “Matrix of 8 × 8 single mode fibres with micro-optics”,Opt. Comm.,198, 121–123, 2001.CrossRefGoogle Scholar
  34. [34]
    Aksyuk (V.A.) et al., “238 × 238 surface micromachined optical cross-connect with 2 dB maximum loss”, Proc.OFC’02, Anaheim, March 2002, Post-deadline paper FB9.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Philippe Gravey
    • 1
  • Jean -Louis de Bougrenet de la Tocnaye
    • 1
  • Bruno Fracasso
    • 1
  • Nicole Wolffer
    • 1
  • Antoine Tan
    • 1
  • Bruno Vinouze
    • 1
  • Mustapha Razzak
    • 1
  • Amal Kali
    • 1
  1. 1.GET/ENST Bretagne, Département d’OptiqueTechopôle de Brest-IroiseBrest CEDEXFrance

Personalised recommendations