Advertisement

Annales Des Télécommunications

, Volume 58, Issue 9–10, pp 1238–1274 | Cite as

Microstructured air-silica fibres: Recent developments in modelling, manufacturing and experiment

  • Dominique Pagnoux
  • Ambre Peyrilloux
  • Philippe Roy
  • Sébastien Fevrier
  • Laurent Labonte
  • Stéphane Hilaire
Article
  • 90 Downloads

Abstract

The main modelling methods devoted to microstructured air-silica optical fibres (MOFS) are presented and discussed. Then, the specific propagation properties ofMOFS are studied in detail. Characteristics measured on fibres manufactured in our laboratory or reported in the literature are analysed. A large number of potential and demonstrated applications are presented and the obtained performances are discussed. A particular attention is given to hollow-core photonic bandgap fibres and their applications.

Key words

Optical fiber Compound structure Photonic crystal Periodic structure Modeling Optical fiber cladding Manufacturing Optical properties Transmission characteristic Optical component 

Les Fibres Optiques Microstructurées Air-Silice: Modélisation, Fabrication et Expérimentation

Résumé

Les principales méthodes de modélisation appliquées aux fibres microstructurées airsilice (FMAS) sont présentées et discutées. Puis les propriétés de propagation spécifiques desFMAS sont détaillées. Les caractéristiques mesurées sur les fibres fabriquées au laboratoire ou rapportées dans la littérature sont analysées. Un grand nombre d’applications potentielles ou démontrées sont présentées et les performances obtenues sont discutées. Une attention particulière est accordée aux fibres à cœur creux à bande interdite photonique et à leurs applications.

Mots clés

Fibre optique Structure composée Cristal photonique Structure périodique Modélisation Gaine fibre optique Fabrication Propriétés optiques Caractéristique transmission Composant optique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yeh (P.), Yariv (A.), Marom (E.), Theory of Bragg fiber,Journal of Optical Society of America,68, no 9, pp. 1196–1201, (1978).CrossRefGoogle Scholar
  2. [2]
    Bréchet (F.), Roy (P.), Marcou (J.), Pagnoux (D.), Single-mode propagation into depressed-core photonicbandgap fibre designed for zero-dispersion propagation at short wavelengths,Electronics Letters,36, no 6, pp. 514–515, (2000).CrossRefGoogle Scholar
  3. [3]
    Marcou (J.),Roy (P.), Monomode photonic bandgap fibres for dispersion shifting towards short wavelengths, proceedings ofEuropean Conference on Optical Communications, Nice, 26–30 september 1999.Google Scholar
  4. [4]
    Bréchet (F.), Leproux (P.), Roy (P.), Marcou (J.), Pagnoux (D.), Analysis of bandpass filtering behaviour of singlemode depressed-core-index photonic -bandgap fibre,Electronics Letters,36, no 10, pp. 870–872, (2000).CrossRefGoogle Scholar
  5. [5]
    Hart (S.D.), Maskaly (G.R.), Temelkuran (B.), Prideaux (P.H.), Joannopoulos (J.D.), Fink (Y), External reflection from omnidirectional dielectric mirror fibers,Science,296, pp. 510–513, (2002).CrossRefGoogle Scholar
  6. [6]
    Birks (T.A.), Roberts (P.J.), Russell (P. St. J.), Atkin (D.M.), Shepherd (T.J.), Full 2-D photonic bandgaps in silica/air structures,Electronics Letters,31, no 22, pp 1941–1943 (1995).CrossRefGoogle Scholar
  7. [7]
    Roberts (P.J.),Birks (T.A.),Russell (P.St.J.),Shepherd (T.J.),Atkin (D.M.), Two-dimensional photonic band-gap structures as quasi-metals,Optics Letters,21, no 7, (1996).Google Scholar
  8. [8]
    Yablonovitch (E.), Photonic bandgap structures,Journal of Optical Society of AmericaB, 10, p 283, (1993)CrossRefGoogle Scholar
  9. [9]
    Knight (J.C.), Birks (T.A.), Russell (P.St.J.), Atkin (D.M.), All-silica single-mode fiber with photonic crystal cladding,Optics Letters,21, no 19, pp. 1547–1549, (1996).CrossRefGoogle Scholar
  10. [10]
    Birks (T.A.), Knight (J.C.), Russell (P.St.J.), Endlessly single-mode photonic crystal fiber,Optics Letters,22, no 13, pp. 961–963, (1997).CrossRefGoogle Scholar
  11. [11]
    Russell (P.St.J.), Holey new fibres, tutorial TuL1,OFC 2001, Anaheim, 20 March 2001.Google Scholar
  12. [12]
    Birks (T.A.), Knight (J.C.), Mangan (B.J.) Russell (P.St.J.), photonic crystal fibres: an endless variety,IEICE trans. Electron.,E84-C, no 5, pp. 585–592, (2001).Google Scholar
  13. [13]
    Bréchet (F), Marcou (J), Pagnoux (D), Roy (P), Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method,Optical Fiber Technology,6, no 2, pp. 181–191, (2000).CrossRefGoogle Scholar
  14. [14]
    Knight (J.C.), Birks (T.A.), Cregan (R.F.), Russell (P.St.J.), Desandra (J.P.), Large mode area photonic crystal fibre,Electronics Letters,34, no 13, pp. 1347–1348, (1998).CrossRefGoogle Scholar
  15. [15]
    Février (S.),Hilaire (S.),Marcou (J.),Pagnoux (D.),Peyrilloux (A.),Roy (P.), Modélisation simplifiée des fibres à cristal photonique par la méthode de l’indice moyenné en azimut,OPTIX 2001, Marseille, 26–28 novembre 2001.Google Scholar
  16. [16]
    Peyrilloux (A.), Février (S.), Marcou (J.), Berthelot (L.), Pagnoux (D.), Sansonetti (P.), Comparison between the finite element method, the localized function method and a novel equivalent averaged index method for modelling photonic crystal fibres,Journal of Optics A: Pure and applied optics,4, pp. 257–262, (2002).CrossRefGoogle Scholar
  17. [17]
    Argyros (A.),Bassett (I.A.),Van Eijkelenborg (M.A.),Large (M.C.J.),Zagari (J.),Nicorovici (N.A.P.),Mcphedran (R.C.),Martijn De Sterke (C.), Ring structures in microstructured polymer optical fibres,Optics Express,9, no 13, (2001).Google Scholar
  18. [18]
    Silvestre (F.), Andrès (M.V.), Andrès (P.), Biorthonormal-basis method for the vector description of opticalfibre modes,Journal of Lightwave Technology,LT-16, pp. 923–928, (1998).CrossRefGoogle Scholar
  19. [19]
    Ferrando (A.), Silvestre (F.), Miret (J.J.), Andrès (P.), Andrès (M.V.), Full-vector analysis of a realistic photonic crystal fiber,Optics Letters,24, no 5, pp. 276–278, (1999).CrossRefGoogle Scholar
  20. [20]
    Broeng (J.), Barkou (S.E.), Sondegaard (T.), Bjarklev (A.), Analysis of air-guiding photonic bandgap fibers,Optics Letters,25, no 2, pp. 96–98, (2000).CrossRefGoogle Scholar
  21. [21]
    Ferrando (A.), Silvestre (F.), Miret (J.J.), Monsoriu (J.A.), Andrès (M.V.), Russell (P.St.J.), Designing a photonic crystal fibre with flattened chromatic dispersion,Electronics Letters,35, no 4, pp. 325–327, (1999).CrossRefGoogle Scholar
  22. [22]
    Monro (T.M.), Richardson (D.J.), Broderick (N.G.R.), Bennett (P.J.), Holy optical fibers: an efficient modal model,Journal of Lightwave Technology,17, no 6, pp. 1093–1102, (1999).CrossRefGoogle Scholar
  23. [23]
    Monro (T.M.), Richardson (D.J.), Broderick (N.G.R.), Bennett (P.J.), Modeling large air fraction holey optical fibers,Journal of Lightwave Technology,18, no 1, pp. 50–56, (2000).CrossRefGoogle Scholar
  24. [24]
    Monro (T.M.), Bennett (P.J.), Broderick (N.G.R.), Richardson (D.J.), Holey fibers with random cladding distribution,Optics Letters,25, no 4, pp. 206–208, (2000).CrossRefGoogle Scholar
  25. [25]
    White (T.P.), Kuhlmey (B.), Mcphedran (R.C.), Maystre (D.), Renversez (G.), Martijn De Sterke (C.), Botten (L.C.), Multipole method for microstructured optical fibers I: formulation,Journal of Optical Society of AmericaB, 10, no 19, pp. 2322–2330, (2002).CrossRefGoogle Scholar
  26. [26]
    Kuhlmey (B.), White (T.P.), Renversez (G.), Maystre (D.), Botten (L.C.), Martijn De Sterke (C.), Mcphedran (R.C.), Multipole method for microstructured optical fibers II: implementation and results,Journal of Optical Society of AmericaB, 10, no 19, pp. 2331–2340, (2002).CrossRefGoogle Scholar
  27. [27]
    Kuhlmey (B.),Renversez (G.),Maystre (D.), chromatic dispersion and losses of microstructured optical fiber, Applied Opticsot, in press, (2003).Google Scholar
  28. [28]
    Maystre (D.), Vincent (P.), diffraction d’une onde électromagnétique plane par un objet cyclindrique non infiniment conducteur de section arbitraire,Optics Communications,5, no 5, pp. 327–330, (1972).CrossRefGoogle Scholar
  29. [29]
    Aubourg (M.), Guillon (P.), A mixed finite element formulation for microwave devices problems; application to MIS structure,Journal of Electromagn. Waves Appl.,5, pp. 371–375, (1991).CrossRefGoogle Scholar
  30. [30]
    Bréchet (F.), Marcou (J.), Pagnoux (D.), Roy (P.), Complete analysis of the propagation characteristics into photonic crystal fibers by the finite element method,Optical Fiber Technology,6, no 2, pp. 181–191, 2000.CrossRefGoogle Scholar
  31. [31]
    Steel (M.J.), White (T.P.), Martijn De Sterke (C.), Mcphedran (R.C.), Botten (L.C.), Symmetry and degeneracy in microstructured optical fibers,Optics Letters,26, no 8, pp. 488–490, (2001).CrossRefGoogle Scholar
  32. [32]
    Peyrilloux (A.),Chartier (T.),Hideur (A.),Berthelot (L.),Melin (G.),Gasca (L.),Pagnoux (D.),Roy (P.), Theoretical and experimental study of the birefringence of a photonic crystal fiber, to be published inJournal of Lightwave Technology.Google Scholar
  33. [33]
    Peyrilloux (A.),Pagnoux (D.),Sansonetti (P.), Modelling of photonic crystal fibres by means of the finite elements method, proceedings of the 2ndElectromagnetic Optics Symposium, Paris, 26–30 august 2001.Google Scholar
  34. [34]
    Feit (M.D.), Fleck (J.A.), computation of mode properties in optical fiber waveguides by a propagating beam method,Applied Optics,19, pp. 1154–1164, (1980).CrossRefGoogle Scholar
  35. [35]
    Leproux (P.),Bréchet (F.),Doya (V.),Roy (P.),Pagnoux (D.),Marcou (J.),Mortessagne (F.), Méthodes de modélisation appliquées aux fibres à cristal photonique,19è Journées Nationales d’Optique Guidée, Limoges (F), 6–8 décembre 1999.Google Scholar
  36. [36]
    Fogli (F.),Saccomandi (L.),Bassi (P.),Bellanca (G.),Trillo (S.), Full vectorialbpm modeling in index-guiding photonic crystal fibers and couplers,Optics Express,10, no 1, (2002).Google Scholar
  37. [37]
    Renversez (G.), Study of microstructured optical fibers using the multipole method, private communicationGoogle Scholar
  38. [38]
    Gander (M.J.), Mcbride (R.), Jones (J.C.D.), Mogilevtsev (D.), Birks (T.A.), Knight (J.C.), Russell (P.St.J.), Experimental measurement of group velocity dispersion in photonic crystal fibre,Electronics Letters,35, no 1, pp. 63–64, (1999).CrossRefGoogle Scholar
  39. [39]
    Peyrilloux (A.),Berthelot (L.),Pagnoux (D.),Sansonetti (P.), Comparison between two methods used for modelling photonic crystal fibres,2nd Electromagnetic Optics Symposium, Paris, 26–30 August 2001.Google Scholar
  40. [40]
    White (T.P.), Mcphedran (R.C.), De Sterke (C.M.), Confinement losses in microstructured optical fibers,Optics Letters,26, no 21, pp. 1660–1662, (2001).CrossRefGoogle Scholar
  41. [41]
    Bennett (P.J.), Monro (T.M.), Richardson (D.J.), Toward practical holey fiber technology: fabrication, splicing, modeling, and characterization,Optics Letters,24, no 17, pp. 1203–1205, (1999).CrossRefGoogle Scholar
  42. [42]
    Tajima (K.),Nakajima (K.),Kurokawa (K.), Low-loss photonic crystal fibers, proceedings ofEuropean Conference on Optical Communications, paper 1.2, Copenhagen, 8–12 September 2002.Google Scholar
  43. [43]
    Farr (L.),Knight (J.C.),Mangan (B.J.),Roberts (P.J.), Low-loss photonic crystal fibre, proceedings ofEuropean Conference on Optical Communications, paper PD13., Copenhagen, 8–12 September 2002.Google Scholar
  44. [44]
    Hasegawa (T.), Sasaoka (E.), Onishi (M.), Nishimura (M.), Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss,Optics Express,9, no 13, pp. 681–686, (2001).Google Scholar
  45. [45]
    Van Eijkelenborg (M.A.), Canning (J.), Ryan (T.), Lyytikainen (K.), Bending-induced colouring in a photonic crystal fibre,Optics Express,7, no 2, pp. 88–94, (2000).CrossRefGoogle Scholar
  46. [46]
    Broeng (J.), Barkou (S.E.), Bjarklev (A.), Sondergaard (T.), Knudsen (E), Review paper: Crystal Fibre Technology, DOPS-NYT2, pp. 22–28, (2000).Google Scholar
  47. [47]
    Marcou (J.),Pagnoux (D.),Bréchet (F.),Leproux (P.),Roy (P),Peyrilloux (A.), Theoretical and experimental study of light propagation into novel fibres designed for the management of the chromatic dispersion, proceedings ofPhotonics 2000, Calcutta, 18–20 december 2000.Google Scholar
  48. [48]
    Marcou (J.),Peyrilloux (A.),Bréchet (F.),Pagnoux (D.),Roy (P),Février (S.),Mélin (G.),Chartier (T.), Bragg fibers and microstructured air-silica fibres for the management of the chromatic dispersion: modelling and experimentation, proceedings ofPIERS 2000, invited paper, Boston, 5–7 july 2002.Google Scholar
  49. [49]
    Ferrando (A.), Silvestre (E.), Miret (J.J.), Andrès (P.), Nearly zero ultraflattened dispersion in photonic crystal fibers,Optics Letters,25, no 11, pp. 790–792, (2000).CrossRefGoogle Scholar
  50. [50]
    Koch (F.),Chernikov (S.V.),Taylor (J.R.), Dispersion measurement in optical fibres over the entire spectal range from 1.1µm to 1.7µm,Optics Communications, no 175, pp. 209–213, (2000).Google Scholar
  51. [51]
    François (P.L.), Alard (F.), Monerie (M.), Chromatic dispersion measurement from Fourier transform of white-light interference pattern,Electronics Letters,23, pp. 357–358, (1987).CrossRefGoogle Scholar
  52. [52]
    Diddams (S.), Diels (J.C.), Dispersion measurements with white-light interferometry,Journal of Optical Society of AmericaB, 13, no 6, pp. 1120–1129, (1996).CrossRefGoogle Scholar
  53. [53]
    Reeves (W.H.),Knight (J.C.),Russell (P.St.J.),Roberts (P.J.), Demonstration of ultra-flattened dispersion in photonic crystal fibers,Optics Express,10, no 14, pp. 609–613.Google Scholar
  54. [54]
    Gander (M.J.), Mcbride (R.), Jones (J.D.C.), Mogilevtsev (D.), Birks (T.A.), Knight (J.C.), Russell (P.St.J.), Experimental measurement of group velocity dispersion in photonic crystal fibre,Electronics Letters,35, no 1, pp. 63–64, (1999).CrossRefGoogle Scholar
  55. [55]
    Russell (P.St.J.), Holey new fibres,Optical Fiber Conference, tutorial TuL, Anaheim, 20 mars 2001.Google Scholar
  56. [56]
    Knight (J.C.), Arriaga (J.), Birks (T.A.), Ortigosa-Blanch (A.), Wadsworth (W.J.), Russell (P.St.J.), Anomalous dispersion in photonic crystal fibres,IEEE Photonics Technology Letters,12, pp. 870–809, (2000).CrossRefGoogle Scholar
  57. [57]
    Andersen (P.A.),Paulsen (H.N.),Larsen (J.J.), A photonic crystal fibre with zero dispersion at 1064nm, proceedings ofEuropean Conference on Optical Communications, paper 3.4.6., Copenhagen, 8–12 September 2002.Google Scholar
  58. [58]
    Libori (S.B.),Knudsen (E.),Bjarklev (A.),Simonsen (H.R.), High-birefringent photonic crystal fiber,Optical Fiber Conference, paper TuM2, Anaheim, 19–22 mars 2001.Google Scholar
  59. [59]
    Cucinotta (A.), Selleri (S.), Vincetti (L.), Zoboli (M.), Perturbation analysis of dispersion properties in photonic crystal fibers through the finite element method,Journal of Lightwave Technology,20, no 8, pp. 1433–1442, (2002).CrossRefGoogle Scholar
  60. [60]
    Chartier (T.), Hideur (A.), Ozkul (C.), Sanchez (F.), Stephan (G.), Measurement of the elliptical birefringence of single-mode optical fibers,Applied optics,40, no 30, pp. 5343–5353, (2001).CrossRefGoogle Scholar
  61. [61]
    Wegmuller (M.),Von Der Weid (J.P.),Oberson (P.),Gisin (N.), High resolution fiber distributed measurements with coherent OFDR, proceedings ofEuropean Conference on Optical Communications, paper 11.3.4, pp. 109–110, Amsterdam, 1–3 October 2001.Google Scholar
  62. [62]
    Niemi (T.),Ludvigsen (H.),Scholder (F.),Legré (M.),Wegmuller (M.),Gisin (N.),Jensen (J.R.),Petersson (A.),Skovgaard (P.M.W.), Polarization properties of single-moded, large-mode area photonic crystal fibers, proceedings ofEuropean Conference on Optical Communications, paper 1.9, Copenhagen, 8–12 September 2002.Google Scholar
  63. [63]
    Ortigosa-Blanch (A.), Knight (J.C.), Wadsworth (W.J.), Arriaga (J.), Mangan (B.J.), Birks (T.A.), Russell (P.St.J.), Highly birefringent photonic crystal fibers,Optics Letters,25, no 18, pp. 1325–1327, (2000).CrossRefGoogle Scholar
  64. [64]
    Mortensen (N.A.), Effective area of photonic crystal fibers,Optics Express,10, no 7, pp. 341–348, (2002).Google Scholar
  65. [65]
    Knight (J.C.), Birks (T.A.), Cregan (R.F.), Russell (P.St.J.), De Sandro (J.P.), Large mode area photonic crystal fibre,Electronics Letters,34, no 13, pp. 1347–1348, (1998).CrossRefGoogle Scholar
  66. [66]
    Ranka (J.K.), Windeler (R. S.), Stentz (A.J.), Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm,Optics Letters,25, no 1, pp. 25–27, (2000).CrossRefGoogle Scholar
  67. [67]
    Fevrier (S.),Albert (A.),Louradour (F.),Roy (P.),Pagnoux (D.),Barthélémy (A.), Fibres optiques non-linéaires microstructurées pour source lumineuse blanche d’impulsions femtosecondes, proceedings ofCOLOQ 2001, Rennes, 5–7 september 2001.Google Scholar
  68. [68]
    Monro (T.M.),Finazzi (V.),Belardi (W.),Kiang (K.M.),Lee (J.H.),Richardson (D.J.), Highly nonlinear holey optical fibres: design, manufacture and device applications, proceedings ofEuropean Conference on Optical Communications, paper 1.5, Copenhagen, 8–12 september 2002.Google Scholar
  69. [69]
    Birks (T.A.), Roberts (P.J.), Russell (P.St.J.), Atkin (D.M.), Shepherd (T.J.), Full 2-D photonic bandgaps in silica/air structures,Electronics Letters,31, no 22, pp. 1941–1943, (1995).CrossRefGoogle Scholar
  70. [70]
    Barkou (S.E.), Broeng (J.), Bjarklev (A.), Silica-air photonic crystal fiber design that permits waveguiding by true photonic bandgap effect, Optics Letters,24, no 1, pp. 46–48, (1999).CrossRefGoogle Scholar
  71. [71]
    Knight (J.C.), Broeng (J.), Birks (T.A.), Russell (P.St.J.), Photonic band gap guidance in optical fibers,Science,282, pp. 1476–1478, (1998).CrossRefGoogle Scholar
  72. [72]
    Cregan (R.F.), Mangan (B.J.), Knight (J.C.), Birks (T.A.), Russell (P.St.J.), Roberts (P.J.), Allan (D.C.), Single mode photonic band gap guidance of light in air,Science,285, pp. 1537–1539, (1999).CrossRefGoogle Scholar
  73. [73]
    West (J.A.),Fajardo (J.C.),Gallagher (M.T.),Koch (K.W.),Borrelli (N.F.),Allan (D.C.), Demonstration ofir-optimized air-core photonic band-gap fiber, proceedings ofEuropean Conference on Optical Communications, pp. 41–42, Munich, 3–7 September 2000.Google Scholar
  74. [74]
    West (J.A.),Venkataraman (N.),Smith (C.M.),Gallagher (M.T.), Photonic crystal fibres, proceedings ofEuropean Conference on Optical Communications, paper Th A22, Amsterdam, 30 sept.–4 oct. 2001.Google Scholar
  75. [75]
    Venkataraman (N.),Gallagher (M.T.),Smith (C.M.),Müller (D.),West (J.A.),Koch (K.W.),Faiardo (J.C.), Low loss (13dB/km) air core photonic band-gap fibre, proceedings ofEuropean Conference on Optical Communications, paperpd1.1, Copenhagen, 8–12 september 2002.Google Scholar
  76. [76]
    Selleri (S.),Cucinotta (A.),Poli (F.),Vincetti (L.),Zoboli (M.), Amplification properties of erbium doped photonic crystal fibers, proceedings ofEuropean Conference on Optical Communications, holey fibres symposium, paper 1.8, Copenhagen, 8–12 september 2002.Google Scholar
  77. [77]
    Sondergaard (T.), Photonic crystal distributed feedback fiber lasers with Bragg gratings,Journal of Lightwave Technology,18, no 4, pp. 589–597, (2000).CrossRefGoogle Scholar
  78. [78]
    Furosawa (K.), Malinowski (A.), Price (J.H.V.), Monro (T.), Sahu (J.K.), Nilsson (J.), Richardson (D.J.), Cladding pumped Ytterbium-doped laser with holey inner and outer cladding,Optics Express,9, no 13, pp. 714–720, (2001).Google Scholar
  79. [79]
    Cregan (R.F.), Knight (J.C.), Russell (P.St.J.), Roberts (P.J.), Distribution of spontaneous emission from an Er3+-doped photonic crystal fiber,Journal of Lightwave Technology,17, no 11, pp. 2138–2141, (1999).CrossRefGoogle Scholar
  80. [80]
    Wadsworth (W.J.), Knight (J.C.), Reeves (W.H.), Russell (P.St.J.), Arriaga (J.), Yb3+-doped photonic crystal fibre laser,Electronics Letters,36, no 17, pp. 1452–1454, (2000).CrossRefGoogle Scholar
  81. [81]
    Glas (P.), Fisher (D.), Cladding pumped large-mode-area Nd-doped holey fiber laser,Optics Express,10, no 6, pp. 286–290, (2002).Google Scholar
  82. [82]
    Wadsworth (W.J.), Percival (R.M.), Bouwmans (G.), Knight (J.C.), Russell (P.St.J.), High power air-clad photonic crystal fibre laser,Optics Express,11, no 1, pp. 48–53, (2003).CrossRefGoogle Scholar
  83. [83]
    Leproux (P.), Février (S.), Doya (V.), Roy (P.), Pagnoux (D.), Modeling and optimization of double clad fiber amplifiers using chaotic propagation of the pump,Optical Fiber Technology,7, no 4, pp. 324–339, (2001).CrossRefGoogle Scholar
  84. [84]
    Holswarth (R.), Zimmermann (M.), Udem (T.), Hansch (T.W.), Russbuldt (P.), Gäbel (K.), Poprawe (R.), Knight (J.C.), Wadsworth (W.J.), Russell (P.St.J.), White-light frequency comb generation with a diodepumped Cr:LiSAF laser,Optics Letters,26, no 17, pp. 1376–1378, (2001).CrossRefGoogle Scholar
  85. [85]
    Provino (L.),Dudley (J.M.),Maillotte (H.),Grossard (N.),Windeler (R.S.),Eggleton (B.J.), Compact broadband continuum source based on microchip laser pumped microstructured fibre,Electronics Letters,37, no 9, (2001).Google Scholar
  86. [86]
    Fedotov (A.B.), Naunov (A.N.), Zheltikov (A.M.), Bugar (I.), Chorvat (D.) Jr.,Chorvat (D.), Tarasevitch (A.P.), Von Der Linde (D.), Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier,Journal of the Optical Society of AmericaB, 19, no 9, pp. 2156–2164, (2002).CrossRefGoogle Scholar
  87. [87]
    Holswarth (R.), Udem (T.), Hänsch (T.W.), Knight (J.C.), Wadsworth (W.J.), Russell (P.St.J.), Optical frequency synthesizer for precision spectroscopy,Physical Review Letters,85, pp. 2264–2266, (2000).CrossRefGoogle Scholar
  88. [88]
    Sharping (J.E.), Fiorentino (M.), Kumar (P.), Windeler (R.S.), All-optical switching based on cross phase modulation in microstructure fiber,IEEE Photonics Technology Letters,14, pp. 77–79, (2002).CrossRefGoogle Scholar
  89. [89]
    Lee (J.H.),Zulfadzli (Y.),Belardi (W.),Monro (T.M.),Thomsen (B.),Richardson (D.J.), HOley fiber based tunableWDM wavelength converter using cross-phase modulation and filtering. Proceedings ofEuropean Conference on Optical Communications, paper 3.4.3, Copenhagen, 8–12 september 2002.Google Scholar
  90. [90]
    Liu (X.), Xu (C.), Knox (W.H.), Chandalia (J.K.), Eggleton (B.J.), Kosinski (S.G.), Windeler (R.S.), Soliton self-frequency shift in a short tapered air-silica microstructure fiber,Optics Letters,26, no 6, pp. 358–360, (2001).CrossRefGoogle Scholar
  91. [91]
    Sharping (J.E.), Fiorentino (M.), Kumar (P.), Windeler (R.S.), Optical-parametric oscillator based on four-wave mixing in microstructure fiber,Optics Letters,27, no 19, pp. 1675–1677, (2002).CrossRefGoogle Scholar
  92. [92]
    Lee (J.H.), Yusoff (Z.), Belardi (W.), Ibsen (M.), Monro (T.M.), Richardson (D.J.), Investigation of brillouin effects in small-core holey fiber: lasing and scattering,Optics Letters,27, no 11, pp. 927–929, (2002)CrossRefGoogle Scholar
  93. [93]
    Benabid (F.), Knight (J.C.), Antonopoulos (G.), Russell (P.St.J.), Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber,Science,298, pp. 399–402, (2002).CrossRefGoogle Scholar
  94. [94]
    Eggleton (B.J.), Westbrook (P.S.), Windeler (R.S.), Spälter (S.), Strasser (T.A.), Grating resonances in air-silica microstructured optical fibers,Optics Letters,24, no 21, pp. 1460–1462, (1999).CrossRefGoogle Scholar
  95. [95]
    Kakarantzas (G.), Birks (T.A.), Russell (P.St.J.), Structural long-period gratings in photonic crystal fibers,Optics Letters,27, no 12, pp. 1013–1015, (2002).CrossRefGoogle Scholar
  96. [96]
    Humbert (G.), Malki (A.), Février (S.), Roy (P.), Pagnoux (D.), Electric arc-induced long period gratings in Ge-free air-silica microstructure fibres,Electronics Letters,39, no 4, pp. 349–350, (2003).CrossRefGoogle Scholar
  97. [97]
    Chandalia (J.K.), Eggleton (B.J.), Windeler (R.S.), Kosinski (S.G.), Liu (X.), Xu (C.), Adiabatic coupling in tapered air-silica microstructured optical fiber,IEEE Photonics Technology Letters,13, pp. 55–54, (2001).CrossRefGoogle Scholar
  98. [98]
    Eggleton (B.J.), Kerbage (C.), Westbrook (P.S.), Windeler (R.S.), Hale (A.), Microstructured optical devices,Optics Express,9, no 13, pp. 698–713, (2001).Google Scholar
  99. [99]
    Kerbage (C.), Hale (A.), Yablon (A.), Windeler (R.S.), Eggleton (B.J.), Integrated all-fiber variable attenuator based on hybrid microstructure fibers,Applied Physics Letters,79, pp. 3191–3193, (2001).CrossRefGoogle Scholar
  100. [100]
    Kerbage (C.), Eggleton (B.J.), Numerical analysis and experimental design of tunable birefringence in microstructured optical fiber,Optics Express,10, no 5, pp. 246–255, (2002).Google Scholar
  101. [101]
    Mangan (B.J.), Knight (J.C.), Birks (T.A.), Russell (P.St.J.), Greenaway (A.H.), Experimental study of dual-core photonic crystal fibre,Electronics Letters,36, no 16, pp. 1358–1359, (2000).CrossRefGoogle Scholar
  102. [102]
    Van Eijkelenborg (M.A.),Large (M.C.J.),Argyros (A.),Zagari (J.),Manos (S.),Issa (N.A.),Bassett (I.A.),Fleming (S.),Mcphedran (R.C.),Martijn De STerke (C.),Nicorovici (N.A.P.), Microstructured polymer optical fibres,Optics Express,9, no 7, (2001).Google Scholar
  103. [103]
    Monro (T.M.),West (Y.D.),Hewak (D.W.),Broderick (N.G.R.),Richardson (D.J.), Chalcogenide holey fibres,Electronics Letters,36, no 24, (2000).Google Scholar
  104. [104]
    Benabid (F.), Knight (J.C.), Russell (P.St.J.), Particle levitation and guidance in hollow-core photonic crystal fiber,Optics Express,10, no 21, pp. 1195–1203, (2002).Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Dominique Pagnoux
    • 1
  • Ambre Peyrilloux
    • 1
  • Philippe Roy
    • 1
  • Sébastien Fevrier
    • 1
  • Laurent Labonte
    • 1
  • Stéphane Hilaire
    • 1
  1. 1.Institut de Recherche en Communications Optiques et Microondes — Unité Mixte de Recherche no6615Faculté des Sciences et TechniquesLIMOGES CEDEX

Personalised recommendations