Advertisement

Rendiconti Lincei

, Volume 3, Issue 3, pp 247–255 | Cite as

Chromosome banding by restriction enzyme digestion distinguishes between Mus domesticusand Mus musculuskaryotypes

  • Silvia Garagna
  • Carlo Alberto Redi
  • Paola Veneroni
  • Ernesto Capanna
  • E. Capanna
Genetics

Abstract

The results obtained after restriction enzymes digestion ofMus domesticus andMus musculus chromosomes, showed regional chromosomal staining differences suitable for distinguishing between trypsin Giemsa homosequential banding patterns. These differences are particularly clear at the pericentromeric level where the satellite DNA is located. These data support the idea that major differences exist in the DNA composition and organization of the satellite DNA betweendomesticus andmusculus genomes.

Key words

Satellite DNA Restriction enzyme banding Mus. 

Il bandeggio cromosomico ottenuto con enzimi di restrizione rivela differenze tra cariotipi di Mus domesticuse di Mus musculus

Riassunto

L’analisi dei risultati ottenuti, utilizzandoin situ enzimi di restrizione in grado di riconoscere e tagliare specifiche sequenze nucleotidiche, ha permesso di mettere in evidenza differenze in grado di distinguere i cariotipi diMus domesticus e diMus musculus, cariotipi che appaiono omosequenziali utilizzando le convenzionali tecniche di G-bandeggiamento. L’analisi dei patterns di digestione enzimatica a livello delle porzioni pericentromeriche dei cromosomi didomesticus e dimusculus ha inoltre confermato la differenza strutturale esistente tra i DNA satellite delle due specie.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi M. S., Bianchi N. O., Pantelias G. E., Wolff S., 1985.The molecular mechanism and pattern of banding induced by restriction endonucleases in human chromosomes. Chromosoma, 91: 131–136.CrossRefGoogle Scholar
  2. Burkholder G., 1989.Morphological and biochemical effects of endonucleases on isolated mammalian chromosomes in vitro. Chromosoma, 97: 347–355.CrossRefGoogle Scholar
  3. Dover G. A., Brown S., Coen E. S., Dallas J., Strachan T., Trick M., 1982.The dynamics of genome evolution and species differentiation. In: G. A. Dover, R. B. Flavell (eds.),Genome Evolution. Academic Press, New York: 343–372.Google Scholar
  4. Dover G. A., Trick M., Strachan T., Coen E. S., Brown S. D. M., 1984.DNA family turnover and coevolution of chromosomes. Chromosomes today, 8: 229–240.Google Scholar
  5. Gropp A., Winking H., 1981.Robertsonian translocations: cytology, meiosis, segregation patterns and biological consequences of heterozygosity. In: R. J. Berry (ed.),Biology of the house mouse. Academic Press, New York: 141–181.Google Scholar
  6. Kaelbling M., Miller D. A., Miller O. J., 1984.Restriction enzyme banding of mouse metaphase chromosomes. Chromosoma, 90: 128–132.CrossRefGoogle Scholar
  7. Lica L., Hamkalo B., 1983.Preparation of centromeric heterochromatin by restriction endonuclease digestion of mouse L929 cells. Chromosoma, 88: 42–49.CrossRefGoogle Scholar
  8. Marshall J. T., Sage R. D., 1981.Taxonomy of the house mouse. In: R. J. Berry (ed.),The biology of the house mouse. Academic Press, New York: 15–25.Google Scholar
  9. Mezzanotte R., Bianchi U., Vanni R., Ferrucci L., 1983.Chromatin organization and restriction endonuclease activity on human metaphase chromosomes. Cytogenet. Cell Genet., 36: 562–566.CrossRefGoogle Scholar
  10. Redi C. A., Capanna E., 1988.Robertsonian heterozygotes in the house mouse and the fate of their germ cells. In: A. Daniel (ed.),The cytogenetics of mammalian autosomal rearrangements. Alan R. Liss, New York: 315–358.Google Scholar
  11. Redi C. A., Garagna S., Della Valle G., Bottiroli G., Dell’orto P., Viale G., Peverali F. A., Raimondi E., Forejt J., 1990.Differences in the organization and chromosomal allocation of satellite DNA between the European long tailed house mice Mus domesticusand Mus musculus. Chromosoma, 99: 11–17.CrossRefGoogle Scholar
  12. Sahasrabuddhe C. G., Pathak S., Hsu T. C., 1978.Responses of mammalian metaphase chromosomes to endonuclease digestion. Chromosoma, 69: 331–338.CrossRefGoogle Scholar
  13. Seabright M., 1971.A rapid banding technique for human chromosomes. Lancet, ii: 971–972.CrossRefGoogle Scholar
  14. Selander R. K., Hunt W. G., Yang S. Y., 1969.Protein polymorphism and genic heterozygosity in two European subspecies of the house mouse. Evolution, 23: 653–667.CrossRefGoogle Scholar
  15. Selander R. K., Yang S. Y., 1969.Protein polymorphism and genic heterozygosity. Genetics, 63: 653–667.Google Scholar
  16. Sumner A. T., 1972.A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res., 75: 304–306.CrossRefGoogle Scholar
  17. Thaler L., Bonhomme F., Britton-Davidian J., 1981.Processes of Speciation and semi-speciation in the house mouse. In: R. J. Berry (ed.),Biology of the house mouse. Academic Press, New York: 27–39.Google Scholar
  18. Zima J., Macholan M., 1989.The Robertsonian fusion 5.12in a population of Mus musculus musculus. Folia Zoologica (Brno), 38: 233–238.Google Scholar

Copyright information

© Accademia nazionale dei Lincei 1992

Authors and Affiliations

  • Silvia Garagna
    • 2
  • Carlo Alberto Redi
    • 2
  • Paola Veneroni
    • 2
  • Ernesto Capanna
  • E. Capanna
    • 1
  1. 1.Dipartimento di Biologia Animale e dell’UomoUniversità degli Studi di Roma «La SapienzaRoma
  2. 2.Dipartimento di Biologia Animale e Centro di Studio per l’lstochimica del C.N.RUniversità degli Studi di PaviaPavia

Personalised recommendations