Advertisement

Annales Des Télécommunications

, Volume 49, Issue 11–12, pp 607–618 | Cite as

Linewidth evolution in semiconductor lasers throughout threshold

  • Christelle Birocheau
  • Zeno Toffano
  • Alain Destrez
Article
  • 130 Downloads

Abstract

A detailed experimental and theoretical investigation on the evolution of linewidth Av(I) function of injection current for different structures of semiconductor lasers has been undertaken. Linewidth shows a continuous transition and tends asymptotically on either side to Schawlow-Townes inverse power behaviours. In a small current zone at threshold warping of the linewidth is observed depending on linewidth enhancement factor a and laser structure. Different models including fluctuations are used in order to describe the coherence evolution : asymptotic behaviours by simple linear response model of Van der Pol equation (VdP), continuous evolution by phase transition Landau model (L) and complete description including a using Fokker-Planck field probability density resolution (fp). All models show the same asymptotic behaviour. (fp) seems to be the best-adapted one because it includes intrinsically phase-amplitude coupling. These models lead to a new determination method of spontaneous emission rate R, α, number of photons at saturation Ss and cavity photon lifetime tp by fitting only two direct measurements (linewidth and optical power).

Key words

Semiconductor laser Spectral line width Threshold level Theoretical study Experimental study Physical model Injection diode Asymptotic behavior Parameter estimation 

évolution de la largeur spectrale des lasers semiconducteurs au passage du seuil

Résumé

Une étude expérimentale et théorique très approfondie a été effectuée sur l’évolution d’un mode d’oscillation pour différentes structures récentes de laser à semiconducteur en fonction du courant de polarisation. L’évolution de la largeur spectrale montre une variation de la cohérence sans discontinuité au seuil et tend asymptotiquement, au-dessus et au-dessous, vers les comportements de Schawlow-Townes inversement proportionnels à la puissance. Au seuil, sur une gamme de courants étroite, un comportement résonnant plus ou moins marqué, dépendant du facteur d’élargissement spectral a et de la structure du laser est observé. Différents modèles pour décrire l’ évolution continue de la cohérence : méthode de la réponse linéaire appliquée à l’équation de Van der Pol (VdP), modèle des transitions de phase de Landau (l) et résolution de l’équation de Fokker Planck sur la densité de probabilité incluant a (fp) sont utilisés. Le modèle (fp) semble le plus approprié, parce qu’il inclut de façon intrinsèque la notion de couplage phase-amplitude. Ces modèles, par l’ajustement de deux mesures directes (largeur spectrale et puissance optique), constituent une méthode nouvelle de détermination du taux d’émission spontanée R, du facteur a, du nombre de photons à saturation Ss et du temps de vie des photons tp.

Mots clés

Laser semiconducteur Largeur raie spectrale Seuil Etude théorique Etude expérimentale Modèle physique Diode injection Comportement asymptotique Estimation paramètre 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hui (R.), Caponio (N.), Benedetto (S.), Montrosset (I.). Line-width of a semiconductor laser operating near threshold.IEEE Photonics Technology Letters (1992),4, no 8, pp. 841–843.CrossRefGoogle Scholar
  2. [2]
    Benedetto (S.), Caponio (N.), Gambini (P.), Hui (R.), Montrosset (I.), Puleo (M), Vezzoni (E.). Near threshold operation of a resonant-type single-mode semiconductor amplifier.CSELT Technical reports (1992),20, no 5, pp. 441–444.Google Scholar
  3. [3]
    Toffano (Z.), Destrez (A.), Birocheau (C), Hassine (L.). New linewidth enhancement determination method in semiconductor lasers based on spectral analysis above and below threshold.Electronics Letters (1992),28, no 1, pp. 9–10.CrossRefGoogle Scholar
  4. [4]
    Schawlow (A. L.), Townes (C. H.). Infrared and optical masers.Physical Review (1958),112, no 6, pp. 1940–1949.CrossRefGoogle Scholar
  5. [5]
    Arnaud (J.). Laser linewidth with gain compression.Electronics Letters (1989),27, no 25, pp. 2354–2356.CrossRefGoogle Scholar
  6. [6]
    Lax (M.). Classical noise V. Noise in self-sustained oscillators.Physical Review (1967),169, no 2, pp. 290–307.CrossRefGoogle Scholar
  7. [7]
    Haug (H.), Haken (H.). Theory of noise in semiconductor lasers emission.Z. Physik (1967),204, pp. 262–275.CrossRefGoogle Scholar
  8. [8]
    Yamamoto (Y.). am and fm quantum noise in semiconductor lasers. Part I: theoretical analysis.IEEE J. Quantum Electron. (1983),19, no 1, pp. 34–46.CrossRefGoogle Scholar
  9. [9]
    Agrawal (G. P.). Effect of gain and index nonlinearities on single-mode dynamics in semiconductor lasers.IEEEJ. Quantum Electron. (1990),26, no 11, pp. 1901–1909.CrossRefGoogle Scholar
  10. [10]
    Kikuchi (K.). Calculated field spectra of semiconductor lasers near threshold.Electronics Letters (1985),21, no 16, pp. 705–706.CrossRefGoogle Scholar
  11. [11]
    Destrez (A.), Toffano (Z.), Birocheau (C.), Hassine (L.). Measurement of spectral characteristics of semiconductor laser diodes-effect of injected current modulation and optical feedback.IEEE Trans. IM (1993),42, no 2.Google Scholar
  12. [12]
    Haken (H.). Z.Physik (1964)181, p. 96.Google Scholar
  13. [13]
    Sargent III (M.), Scully (M. O.), Lamb Jr. (W. E.). Laser physics.Addison-Wesley (1974).Google Scholar
  14. [14]
    Risken (H.), Seybold (K.). Linewidth of a detuned single mode laser near threshold.Physics Letters (1972),38A, no 2, pp. 63–64.Google Scholar
  15. [15]
    Risken (H.), Vollmer (H. D.). The transient solution of the laser Fokker-Planck equation.Z. Physik (1967),204, pp. 240–253.CrossRefGoogle Scholar
  16. [16]
    Risken (H.), Schmid (C), Weidlich (W.). Fokker Planck equation, distribution and correlation functions for laser noise.Z. Physik (1966),194, pp. 337–359.CrossRefGoogle Scholar
  17. [17]
    Grossmann (S.), Richter (P. H.). Laser threshold and nonlinear Landau fluctuation theory of pPhase transitions.Z. Physik (1971),242, pp. 458–475.CrossRefGoogle Scholar
  18. [18]
    Weidlich (W), Haake (F.).Z. Physik (1965),185, p. 30 and Z.Physik,186, p. 203.MATHCrossRefGoogle Scholar
  19. [19]
    Gerhardt (H.), Welling (H.), Gutter (A.). Measurements of the laser linewidth due to quantum phase and quantum amplitude noise above and below threshold. I. Z.Physik (1972), 253, pp. 113–126.CrossRefGoogle Scholar
  20. [20]
    Cohen (J. S.), Lenstra (D.). Spectral properties of the coherence collapsed state of a semiconductor laser with delayed optical feedback.IEEEJ. QE (1989),25, no 6, pp. 1143–1151.CrossRefGoogle Scholar
  21. [21]
    Gallion (P.), Debarge (G.). Quantum phase noise and field correlation in single frequency semiconductor laser systens.IEEE J. QE (1984),20, no 4, pp. 343–349.CrossRefGoogle Scholar
  22. [22]
    Birocheau (C), Destrez (A.), Toffano (Z.), Hassine (L.). Experimental study of optical intensity noise on 1.3 μn laser BH diodes.Subject to Optical Feedback, Opto’92 (1992), pp. 242–245.Google Scholar
  23. [23]
    Krüger (U.), Petermann (K.). The semiconductor laser linewidth due to the presence of side modes.IEEE J. QE (1988),24, no 12, pp. 2355–2358.CrossRefGoogle Scholar
  24. [24]
    Agrawal (G. P.), Dutta (N. K.). Long-wavelength semiconductor lasers.Van Nostrand Reinhold (1986).Google Scholar
  25. [25]
    Abramowitz (M.), Stegun (I. A.). Handbook of mathematical functions.Dover Publications (1965).Google Scholar
  26. [26]
    Hempstead (R.), Lax (M.). Classical noise VI. Noise in self-sustained oscillators near threshold.Physical Review (1967),161, no 2, pp. 350–366.CrossRefGoogle Scholar
  27. [27]
    Risken (H.). The Fokker Planck equation.Springer Verlag (1984).Google Scholar
  28. [28]
    Seybold (K.), Risken (H.). On the theory of a detuned single mode laser near threshold.Z. Physik (1974),267, pp. 323–330.CrossRefGoogle Scholar
  29. [29]
    Siegman (A. E.). Lasers.University Science Books, Mill Valley (1986), pp. 510–522.Google Scholar
  30. [30]
    Birocheau (C), Destrez (A.), Toffano (Z.), Hassine (L.). Effect of optical feedback on the spectral width of semiconductor lasers as a function of the polarisation current.Opto’93, pp. 110-113.Google Scholar
  31. [31]
    Richter (P. H.), Grossmann (S.). Spectral linewidths of two mode lasers.Z. Physik (1971),255, pp. 59–75.CrossRefGoogle Scholar
  32. [32]
    Kikuchi (K.). Origin of residual semiconductor laser linewidth in high-power limit.Electronics Letters (1988),24, no 16, pp. 1001–1002.CrossRefGoogle Scholar
  33. [33]
    Yariv (A.). Quantum electronics. Third edition.John Wiley and Sons, New York (1988).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Christelle Birocheau
    • 1
  • Zeno Toffano
    • 1
  • Alain Destrez
    • 1
  1. 1.Laboratoire d’optoélectronique, service Radio SUPÉLECPlateau de MoulonGif-sur-Cvette CedexFrance

Personalised recommendations