Advertisement

Annales Des Télécommunications

, Volume 58, Issue 11–12, pp 1725–1756 | Cite as

State of the art and future ofWDM transmission

  • Michel Joindot
Article

Abstract

After briefly recalling the recent history of optical communication, this paper describes the structure of aWDM system, the critical parameters involved in its design, the different degradations which the transmitted signal suffers from, the state of the art and the future evolutions ofWDM transmission technology. Some recent results are given to illustrate the best results obtained in the research laboratories.

Key words

Optical telecommunication Wavelength division multiplexing State of the art Review Background noise Signal distortion System performance Optical amplifier Optical fiber transmission 

État de L’Art et perspectives de la transmission wdm

Résumé

Après un bref rappel de l’histoire de la transmission optique, cet article décrit la structure d’un système de transmission utilisant le multiplexage en longueur d’onde, les paramètres critiques, les dégradations subies par le signal, l’état de l’art et les évolutions futures. Quelques résultats récents sont donnés en fin d’article pour illustrer les meilleures performances obtenues à ce jour dans les laboratoires.

Mots clés

Télécommunication optique Multiplexage longueur d’onde État actuel technique Article synthèse Bruit fond Distorsion signal Performance système Amplificateur optique Transmission fibre optique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Joindot (I.),Joindot (M.) et douze coauteurs “Les Télécommunications par fibres optiques”Dunod, Collection Technique et Scientifique des Télécommunications. 1996.Google Scholar
  2. [2]
    Desurvire (E.), “Erbium Doped Fiber Amplifiers: Principles and Applications”Wiley New York 1996Google Scholar
  3. [3]
    Agrawal (G.), “Non Linear Fiber Optics”,Academic Press, 1989.Google Scholar
  4. [4]
    Chraplyvy (A.R.), “Limitations on Lightwave Communications Imposed by Optical Fiber Non linearities”.Journal on Lightwave Technology,8, no 10 novembre 1990.Google Scholar
  5. [5]
    Marcuse (D.),ChraplyvyA (R.),Tkach (R.W.), “Effects of Fiber Non linearity on Long Distance Transmission”,Journal on Lightwave Technology,9, no 1 janvier 1991.Google Scholar
  6. [6]
    Tkach (R.W.), “Four Photon Mixing and High SpeedWDM Systems”,Journal of Lightwave Technology,8, no 13 1995.Google Scholar
  7. [7]
    Andresciani (D.),Curti (F.),Matera (F.),Daino (B.), “Measurement of the group delay difference between the principal states of polarization on a low birefringence terrestrial fibre cable”,Optics Letters,12, No 10, October 1987Google Scholar
  8. [8]
    Ciprut (P.),Gisin (N.),Gisin (B.),Passy (R.),Von der Weid (J.P.),Prieto (F.),Zimmer (C.W.), “Second order polarization mode dispersion: impact on analogue and digital transmission”Journal of Lightwave Technology,16, no 5 may 1998.Google Scholar
  9. [9]
    Foschini (G.J.),Poole (C.P.), “Statistical Theory of Polarization Mode Dispersion in Single Mode Fibers”,Journal on Lightwave Technology,9, no 11 november 1991.Google Scholar
  10. [10]
    Gisin (N.),Passy (R.),Bishoff (J.C.),Perny (B.), “Experimental Investigations of the Statistical Properties of Polarization Mode Dispersion in Single Mode Fibers”IEEE Photonics Technology Letters,5, No 7 July 1993.Google Scholar
  11. [11]
    Gisin (N.) et al, “Definition of Polarization Mode Dispersion and first results of the cost 241 Round Robin Measurements”.Pure and Applied Optics,4 (1995) p 511–522CrossRefGoogle Scholar
  12. [12]
    Penninckx (D.),Lanne (S), “Reducingpmd impairments”,OFC 2001 TuP1Google Scholar
  13. [13]
    Wedding (B.),Chiarotto (A.),Kübart (W.),Bülow (H.), “Fast Adaptive Control for electronic equalization ofpmd”,OFC 2001 TuP4.Google Scholar
  14. [14]
    Boubal (F.)et al., 4.16 Tbit/s (104×40 Gbit/s) unrepeatered transmission over 135 km in S+C+L bands with 104 nm total bandwidth.European Conference on Communications 2001 Amsterdam Paper MoF34.Google Scholar
  15. [15]
    Brandon (E.),Blondel (J.P.), “Raman limited, truly unrepeatered transmission at 2.5 Gbit/s over 453 km with 30 dBm launch signal power”,European Conference on Communications Madrid 1998, session 3Google Scholar
  16. [16]
    Buet (L.),Boubal (F.),Havard (V.),Labrunie (L.),Le Roux (P.),Brandon (E.), “Error Free 100×10 Gbit/s unrepeatered transmission over 350 km”,OFC 2001 paper TuU5.Google Scholar
  17. [17]
    Ait Sab (O.),Fang (J.), “Concatenated Forward Error Correction Schemes for Long HaulDWDM Optical Transmission Systems”European Conference on Communications 99 Nice,II, p. 290–291.Google Scholar
  18. [18]
    Helard (F.),Bougeard (S.),Citerne (J.), “Forward Error Correction Coding Schemes for Fiber Optic Systems at 10 Gbit/s,. European Conference on Communications 1999 Nice,II, p. 288–289.Google Scholar
  19. [19]
    Glavieux (A.),Joindot (M.), “Communications Numériques”Masson Collection Pédagogique des Télécommunication, 1996.Google Scholar
  20. [20]
    Yomenaga (K.), Kuwano (S.), “Dispersion tolerant optical transmission system using duobinary transmitter and binary receiver”.Journal of Lightwave Technology,15, p 1530–1537 1997.CrossRefGoogle Scholar
  21. [21]
    Bigo (S.), Improving Spectral Efficiency by ultra narrow optical filtering to achieve multiterabit/s capacitiesOFC 2002 paper WX6.Google Scholar
  22. [22]
    Griffin (R.A.),Carter (A.C.), «Optical Differential Phase Shift Keying for High Capacity Optical transmission».OFC 2002 Paper WX6.Google Scholar
  23. [23]
    Bigo (S.)et al. Transmission of 125WDM channels at 42.7 Gbit/s (5 Tbit/s capacity) over 12 × 100 km of TeraLight Ultra fibre.European Conference on Communications 2001 Amsterdam Paperpdm11Google Scholar
  24. [24]
    Bissesur (H.)et al., 3.2 Tbit/s (80×40 Gbit/s) C band transmission over 3×100 km with 0.8 bit/s/Hz efficiency.European Conference on Communications Amsterdam 2001, paperpdm 11.Google Scholar
  25. [25]
    Fukuchi (K.)et al., “10,92 Tbit/s (273×40 Gbit/s) triple band ultra denseWDM optical repeatered transmission experiment”,OFC 2001 PD24.Google Scholar
  26. [26]
    Le Roux (P.)et al. 25 GHz spacedDWDM 160 × 10.66 Gbit/s unrepeatered transmission over 380 km.European Conference on Communications 2001 Amsterdam, paperpdm 15.Google Scholar
  27. [27]
    Mollenauer (L.F.), Evangelides (S.G.), Haus (H.A.), “Long distance soliton propagation using lumped amplifier and dispersion shifted fiber”,Journal on Lightwave Technology,LT9, p 194–197, 1996.Google Scholar
  28. [28]
    Tanaka (K.)et al., “40 Gbit/s×25WDM 306 km unrepeatered transmission using 175 µm2 Aeff fiber”.European Conference on Communications 2001 Amsterdam, paper MoF36.Google Scholar
  29. [29]
    Vareille (G.),Julien (B.),Pitel (F.),Marcerou (J.F.), “3.65 Tbit/s (365×11.6 Gbit/s) transmission experiment over 22.2 GHz channel spacing inNRZ format”.European Conference on Communications 2001 Amsterdam, paperpdm17.Google Scholar
  30. [30]
    Yu (J.)et al., “160 Gb/s single channel unrepeatered transmission over 200 km of non zero dispersion shifted fiber”.European Conference on Communications 2001 Amsterdam Paperpdm 17.Google Scholar
  31. [31]
    Sunnerud (H.), “Long term 160 Gb/sTDM transmission with automaticpmd compensation and system monitoring using an optical sampling system”.European Conference on Communications 2001 Amsterdam.Google Scholar
  32. [32]
    Bigo (S.) Design of multiterabits terrestrial transmission systems facilitated by simple analytical tools.Annales des Télécommunications,58,n o 11–12, novembre-décembre 2003.Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.France Telecom R&DTechnopole AnticipaLannionFrance

Personalised recommendations