Advertisement

Thalamic modulation of aggression

  • O. J. Andy
  • L. Giurintano
  • S. Giukintano
  • T. McDonald
Article

Abstract

This experiment extends Pavlov’s method of contrasts for 8 components of aggression were quantitatively evaluated in 11 freely moving adult cats. Aggression was elicited from the perifornix septohypothalamic areas by a series of progressively increasing and decreasing stimulation parameters. Three levels of thalamic stimulation (low, medium, and high) were combined with the perifornix stimulations. High level thalamic stimulation tended to facilitate the aggressive response elicited by low level perifomix stimulation. Thalamic lesions attenuated the aggression response, especially those elicited during high level perifornix stimulation. It was suggested that within the hypothalamic induced aggression circuitry the center median nucleus modulates the excitatory state of the system. The discussion concerns anatomic and physiologic pathways through which the center median nucleus may modulate the sensory, motor, and affective-autonomic subsystems into a well integrated aggressive state. These experimental findings are supported by the clinically established treatment of aggression by stereotaxic lesions placed in the center median nucleus.

Keywords

Aggressive Behavior Thalamic Lesion Attack Behavior Chronic Severe Pain Autonomic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. E., and Rutkin, B. B.: Lesions of the centrum medianum in the treatment of movement disorders.Confin. Neurol.,26:231–236, 1965.PubMedGoogle Scholar
  2. Albe-Fessard, D., and Fessard, A.: Thalamic integrations and their consequences at the telencephalic level.In Progress in Brain Research,1:115-48, ed. by Moruzzi, G., Fessard, A., and Jasper, H. H., Amsterday, Elsevier Press, 1963.Google Scholar
  3. Albe-Fessard, D., and Gillett, E.: Convergences d’afferences d’origines corticale et peripheriques vers le centre median du chat anesthesie ou eveille.Electroenceph. Clin. Neurophysiol.,13:257–69, 1961.PubMedCrossRefGoogle Scholar
  4. Andy, O. J.: Thalamotomy in hyperactive aggressive behavior.Confin. Neurol.,32:322–325, 1970.PubMedCrossRefGoogle Scholar
  5. Andy, O. J.: Thalamotomy for psychopathic behavior.South. Med. J. V 68, No. 4, April 1975.Google Scholar
  6. Andy, O. J.: Neurosurgical treatment of abnormal behavior.Am. J. Med. Sci.,252:232–238, 1966.PubMedCrossRefGoogle Scholar
  7. Andy, O. J.: Development of pain appreciation after thalamotomy.Confin. Neurol. 1975.Google Scholar
  8. Andy, O. J., Giurintano, L., and Laing, J. W.: Conditioned aggressive behavior. International Research Communications System, April 1973.Google Scholar
  9. Andy, O. J., and Jurko, M. F.: Thalamotomy for hyperresponsive syndrome: Lesions in the center median and intralaminar nuclei.In Psychosurgery, ed. by Hitchcock, E., Laitinen, L., Vaernet, K., Charles C Thomas Publishers, 1972.Google Scholar
  10. Bandler, R. J., Jr., and Flynn, J. P.: Neural pathways from thalamus associated with regulation of aggressive behavior.Science,183:96–99, 1974.PubMedCrossRefGoogle Scholar
  11. Bandler, R. J., Jr., and Flynn, J. P.: Control of somatosensory fields for striking during hypothalamically elicited attack.Brain Research,38:197–201, 1972.PubMedCrossRefGoogle Scholar
  12. Berntson, G. G.: Blockade and release of hypothalamically and naturally elicited aggressive behaviors in cats following midbrain lesions.Journal of Comparative and Physiological Psychology,81:541–554, 1972.PubMedCrossRefGoogle Scholar
  13. Bowsher, D.: Some afferent and efferent connections of the parafascicularcenter median complex.In The Thalamus, ed. by Purpura, D.P., and Yahr, M. D., Columbia University Press, 1966.Google Scholar
  14. Chi, C. C., and Flynn, J. P.: Neural pathways associated with hypothalamically elicited attack behavior in cats.Science,171:703–706, 1971.PubMedCrossRefGoogle Scholar
  15. Cowan, W. M., and Powell, T. P. S.: The projection of the midline and intralaminar nuclei of the thalamus of the rabbit.J. Neurol. Neurosurg., Psychiat.,18:266–79, 1955.CrossRefGoogle Scholar
  16. Delgado, J. M. R.: Social rank and radio-stimulated aggressiveness in monkeys.J. Nerv. Ment. Dis.,144:383–390, 1967.PubMedCrossRefGoogle Scholar
  17. Delgado, J. M. R.: Aggressive behavior evoked by radio stimulation in monkey colonies.Am. Zool.,6:669–681, 1966.PubMedGoogle Scholar
  18. Delgado, J. M. R., and Mir, D.: Fragmental organization of emotional behavior in the monkey brain,Ann. New York Acad. Sci.,159:731–751, 1969, Article 3.CrossRefGoogle Scholar
  19. Droogleever, Fortuyn, J., and Stefens, R.: On the anatomical relations of the intralaminar and midline cells of the thalamus.Electroenceph. Clin. Neurophysiol.,3:393–400, 1951.CrossRefGoogle Scholar
  20. Flynn, J. P.: Patterning mechanisms, patterned reflexes, and attack behavior in cats. Nebraska Symposium on Motivation, 1972; pp. 125–153.Google Scholar
  21. Flynn, J. P., Edwards, S. B., and Bandler, R. J., Jr.: Changes in sensory and motor systems during centrally elicited attack.Behav. Sci.,16:1–19, 1971.PubMedCrossRefGoogle Scholar
  22. Girgis, M.: The role of the thalamus in the regulation of aggressive behavior.Internat. J. Neur.,8:327–351, 1971.Google Scholar
  23. Glusman, M.: The hypothalamic “savage” syndrome.Aggression, Res. Publ. A.R.N.-M.D.,52:52–92, 1974.Google Scholar
  24. Hassler, R., and Dieckmann, G.: Stereotaxic treatment of compulsive and obsessive symptoms.Confin. Neurol.,29:153–158, 1967.PubMedCrossRefGoogle Scholar
  25. Hunsperger, R. W.: Role of substantia grisea centralis and mesencephali in electrically induced rage reactions.In Progress in Neurobiology, ed. by Kappers, J.A., Amsterdam, Elsevier Press, 1956.Google Scholar
  26. Hunsperger, R. W., and Bucher, V. M.: Affective behavior produced by electrical stimulation in the forebrain and brain stem of the cat.In Progress in Brain Research, ed. by Adey, W. R., and Tokizane, T., 27:103-127, 1967.Google Scholar
  27. Kaelber, W. W., Mitchell, C. L., and Way, J. S.: Some sensory influences on savage (affective) behavior in cats.Am. J. Physiol.,209:866–870, 1965.PubMedGoogle Scholar
  28. Kuypers, H. G. J. M.: Discussion, Center median nucleus of Luys by Mehler, W. R.In The Thalamus, ed. by Purpura, D. P., and Yahr, M. D., Columbia University Press, 1966.Google Scholar
  29. MacDonnell, M. F., and Flynn, J. P.: Attack elicited by stimulation of the thalamus and adjacent structures of cats.Behaviour,31:185–202, 1968.CrossRefGoogle Scholar
  30. MacDonnell, M. F., and Flynn, J. P.: Attack elicited by stimulation of the thalamus of cats.Science,144:1249–1250, 1964.PubMedCrossRefGoogle Scholar
  31. MacDonnell, M. F., and Flynn, J. P.: Control of sensory fields by stimulation of hypothalamus.Science,152:1406–1408, 1966.PubMedCrossRefGoogle Scholar
  32. Malliani, A., Bizzi, E., Apelbaum, J., and Zanchetti, A.: Ascending afferent mechanisms maintaining sham rage behavior in the acute thalamic cat.Arch. Ital. Biol.,101:632, 1963.PubMedGoogle Scholar
  33. Mark, V. H., and Ervin, F. R.: Role of thalamotomy in treatment of chronic severe pain.Postgrad. Med.,37:563–571, 1965.PubMedGoogle Scholar
  34. Mark, V. H., Ervin, F. R., and Hackett, T. P.: Clinical aspects of stereotactic thalamotomy in the human. I. The treatment of chronic severe pain.Arch. Neurol.,3:351–367, 1960.PubMedGoogle Scholar
  35. Mark, V. H., Ervin, F. R., and Yakovlev, P. I.: Stereotactic thalamotomy, III. The verification of anatomical lesion sites in the human thalamus.Arch. Neurol.,8:528–538, 1963.Google Scholar
  36. Mehler, W. R.: Further notes on the center median nucleus of Luys.In The Thalamus, ed. by Purpura, D. P., and Yahr, M. D., Columbia University Press, 1966.Google Scholar
  37. Meulders, M., Massion, J., Colle, J., and Albe-Fessard, D.: Effet d’ablations telencephaliques sur l’amplitude des potentiels evoques dans le centre median par stimulation somatique.Electroenceph. Clin. Neurophysiol.,15:29–38, 1963.CrossRefGoogle Scholar
  38. Nauta, W. J. H., and Mehler, W. R.: Projections from the lentiform nuclei in the monkey.Brain Res.,1:1–38, 1965(a).Google Scholar
  39. Nauta, W. J. H., and Mehler, W. R.: Some efferent connections of the lentiform nucleus in monkey and cat.Anatom. Rec.,139:260, 1961.Google Scholar
  40. Nauta, W. J. H., and Mehler, W. R.: A summary of projections from the lentiform nucleus in the monkey. Second Symposium on Parkinson’s Disease, 1965(b).Google Scholar
  41. Nauta, W. J. H., and Whitlock, D. G.: An anatomical analysis of the nonspecific thalamic projection system.In Brain Mechanisms and Consciousness, ed. by Delafresnaye, J. F., Charles C Thomas, 1954.Google Scholar
  42. Petras, J. M. Fiber degeneration in the basal ganglia and diencephalon following lesions in the precentral and postcentral cortex of the monkey (Macaca mulatta); with additional observations in the chimpanzee. VIII International Congr. Anat. Wiesbaden, 1966.Google Scholar
  43. Petras, J. M.: Some fiber connections of the precentral cortex (areas 4 and 6) with the diencephalon in the monkey (Macaca mulatta).Anatom. Rec.,148:322, 1964.Google Scholar
  44. Powell, T. P. S., and Cowan, W. M.: The connections of the midline and intralaminar nuclei of the thalamus of the rat.J. Anat.,88:307–319, 1954.PubMedGoogle Scholar
  45. Powell, T. P. S., and Cowan, W. M.: A study of thalamo-striate relations in the monkey.Brain,79:364–390, 1956.PubMedCrossRefGoogle Scholar
  46. Purpura, D. P., Frigyesi, T. L., McMurtry, J. G., and Scarff, T.: Synaptic mechanisms in thalamic regulation of cerebello-cortical projection activity.In The Thalamus, ed. by Purpura, D. P., and Yahr, M. D., Columbia University Press, 1966.Google Scholar
  47. Renfrew, J. W.: The intensity function and reinforcing properties of brain stimulation that elicits attack.Physiol. Behav.,4:509–515, 1969.CrossRefGoogle Scholar
  48. Scheibel, M. E., and Scheibel, A. B.: Patterns or organization in specific and nonspecific thalamic fields.In The Thalamus, ed. by Purpura, D., and Yahr, M. D., Columbia University Press, 1966.Google Scholar
  49. Schreiner, L., Rioch, D. McK., Pechtel, C., and Masserman, J. H.: Behavioral changes following thalamic injury in the cat.J. Neurophysiol.,16:234–246, 1953.PubMedGoogle Scholar
  50. Skultety, F. M.: Stimulation of periaqueductal gray and hypothalamus.Arch. of Neurol.,8:608, 1963.Google Scholar
  51. Skultety, F. M., and Chamberlain, M. S.: The effects of lateral midbrain lesions on evoked behavioral responses.Neurol.,15:438–443, 1965.Google Scholar
  52. Speigel, E. A., Wycis, H. I., Freed, H., and Orchinik, C.: The central mechanisms of the emotions (experiences with circumscribed thalamic lesions).Am. J. Psychiat.,108:426–431, 1951.Google Scholar
  53. Valenstein, E. S., and Nauta, W. J. H.: A comparison of the distribution of the fornix system in the rat, guinea pig, cat, and monkey.J. Comp. Neurol.,113: 337–63, 1959.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 1975

Authors and Affiliations

  • O. J. Andy
    • 1
  • L. Giurintano
    • 1
  • S. Giukintano
    • 1
  • T. McDonald
    • 1
  1. 1.Neurosurgery Center for Seizure and Behavioral Disorders, Department of NeurosurgeryUniversity of Mississippi Medical CenterJackson

Personalised recommendations