Advertisement

Micellar solubilization of biopolymers in hydrocarbon solvents. ii. the case of horse liver alcohol dehydrogenase

  • Peter Meier
  • Pier Luigi Luisi
Article

Abstract

The chemical characterization of horse liver alcohol dehydrogenase solubilized in isooctane via reverse micelles formed by the anionic surfactant di (2-ethyl-hexyl) sodium sulfosuccinate (AOT) and water (0.6 to 4% v/v) is presented. The enzyme’s catalytic activity toward acetaldehyde reduction is markedly dependent upon w0 = [H2O]/[AOT], and upon the pH of the stock aqueous solution (pHst), from which the hydrocarbon enzyme solution is prepared. Kinetically, the micellar solution appears to follow a normal Michaelis-Menten behavior, with a turnover number which, under the optimal conditions (w0 = 42, pHst = 8.8), appears to be higher than in bulk water. The affinity between enzyme and NADH, as judged from direct binding studies (quenching of the protein fluorescence), is much reduced with respect to water if concentrations refer to the water pool of the micelles, and comparable to water if concentrations refer to the overall volume (hydrocarbon plus water pool). Also, the Km values are much higher if concentrations refer to the water pool. Ultraviolet absorption studies show that the aromatic chromophores are not significantly perturbed on going from a water solution to the micellar solution. The essentially aqueous environment of the protein in the reverse micelles is confirmed by fluoresence studies. Circular dichroism studies show that the enzyme’s conformation in the micelles is similar to that in water; however, under certain conditions, small but significant changes of the main chain folding seem to occur, which do not impair enzymatic activity. The spectroscopic properties of NADH in the hydrocarbon phase (fluorescence and circular dichroism) are also investigated. The potential of the LADH-NADH system for technical applications (oxidoreduction of lipophylic substrates) is discussed.

Keywords

NADH Circular Dichroism Spectrum Reverse Micelle Micellar Solution Water Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bränden, C.-J., Jörnvall, H., Eklund, H., andFurugren, B. (1975)In The Enzymes, 3rd. ed., Vol. XI,Boyer, P. D. (ed.), Academic, New York, pp. 103–90.Google Scholar
  2. 2.
    Sund, H., andTheorell, H. (1963)In The Enzymes, 2nd. ed., Vol. VII,Boyer, P. D. (ed.), Academic, New York, pp. 25–57.Google Scholar
  3. 3.
    Joppich-Kuhn, R., andLuisi, P. L. (1976) Eur. L Biochem. 83: 593–599.CrossRefGoogle Scholar
  4. 4.
    Abdallah, M. A., Biellmann, J.-F., Wiget, P., Joppich-Kuhn, R., andLuisi, P. L. (1978) Eur. J. Biochem. 89: 397–405.CrossRefGoogle Scholar
  5. 5.
    Jones, J. B. andBeck, J. F. (1976)In Techniques of Chemistry, Vol. 10, Wiley, New York, pp. 107–401.Google Scholar
  6. 6.
    Theorell, H., andYonetani, T. (1963) Biochem. Z. 338: 537–53.Google Scholar
  7. 7.
    Zulauf, M., andEicke, H. F. (1979) J. Phys. Chem. 83: 480–86.CrossRefGoogle Scholar
  8. 8.
    Menger, F. M., andSaito, G. (1978) J. Am. Chem. Soc. 100: 4376–79.CrossRefGoogle Scholar
  9. 9.
    Wolf, R., andLuisi, P. L. (1979) Biochem. Biophys. Res. Commun. 89; 209–217.CrossRefGoogle Scholar
  10. 10.
    Menger, F. M., andYamada, K. (1979) J. Am. Chem. Soc. 101: 6731–34.CrossRefGoogle Scholar
  11. 11.
    Smith, R., andLuisi, P. L., Helv. Chem. Acta, 1981, in press.Google Scholar
  12. 12.
    Oppenheimer, N. J., Arnold, L. J., andKaplan, N. O. (1971) Proc. Natl. Acad. Sci. U.S.A. 68: 3200–5.CrossRefGoogle Scholar
  13. 13.
    Baici, A., Luisi, P. L., Olomucki, A., Doublet, M.-O. S andKlincak, J. (1974) Eur. J. Biochem. 46: 59–66.CrossRefGoogle Scholar
  14. 14.
    Dalzeil, K. (1963) J. Biol. Chem. 238: 2850–58.Google Scholar
  15. 15.
    Baici, A., Luisi, P. L., andAttanasi, O. (1975/76) J. Mol. Catal. 1: 223–44.Google Scholar
  16. 16.
    Theorell, H., andWiner, A. D. (1959) Arch. Biochem. Biophys. 83: 291–308.CrossRefGoogle Scholar
  17. 17.
    Theorell, H., andMcKinley-McKee, J. S. (1961) Acta Chem. Scand. 15: 1811–33.CrossRefGoogle Scholar
  18. 18.
    Bonner, F. J., Wolf, R., andLuisi, P. L. (1980) J. Solid-Phase Biochem. 5: 255–268, this issue.CrossRefGoogle Scholar

References

  1. Methods for Determining Metal Ion Environments in Proteins. By Dennis W. Darnall and Ralph G. Wilkins. Elsevier North-Holland, New York, 1980, 324 pages, $29.50.Google Scholar
  2. Natural Sulfur Compounds: Novel Biochemical and Structural Aspects. Edited by Doriano Cavallini, Gerald E. Gaull, and Vincenzo Zappia. Plenum Press, New York, 1980, 552 pages, $49.50.Google Scholar
  3. Dehydrogenases Requiring Nicotinamide Coenzymes. Edited byJonathan Jeffery. Birkhauser Boston, Inc., 1980, 284 pages, $36.Google Scholar
  4. Structure and Bonding, Volume 41: Molecular Structure and Sensory Physiology. Edited by Peter Hemmerich. Springer-Verlag, New York, 1980, 146 pages, $36.80.Google Scholar
  5. Enzyme Engineering: Future Directions. Edited by Lemuel B. Wingard, Jr., Ilia V. Berezin, and Anatole A. Klyosov. Plenum Press, New York, 1980, 521 pages, S59.50.Google Scholar

Copyright information

© Humana Press Inc. 1980

Authors and Affiliations

  • Peter Meier
    • 1
  • Pier Luigi Luisi
    • 1
  1. 1.Technisch-Chemisches Laboratorium der ETH-ZurichETH-Zentrum8031-ZiirichSwitzerland

Personalised recommendations