Advertisement

Annales des Télécommunications

, Volume 36, Issue 5–6, pp 339–345 | Cite as

Reconstruction d’obstacles métalliques de forme simple

  • Walid Tabbara
Article
  • 11 Downloads

Analyse

Dans cet article est décrite une méthode permettant par analyse multifréquentielle du champ rétrodiffusé par un obstacle parfaitement conducteur, de reconstruire totalement ou partiellement la forme de la cible. La méthode est basée sur l’approximation de l’optique physique. Après le rappel des équations de base, l’ étude du cas de la sphère permet de déterminer les paramètres d’intérêt pratique (bande spectrale, nombre de fréquences, données bruitées). On étudie la stabilité de la reconstruction lorsque ces paramètres varient.

Mots clés

Propagation onde électromagnétique Obstacle Rétrodiffusion Reconstruction surface Forme géométrique Corps conducteur 

Reconstruction of perfectly conducting bodies of simple shape

Abstract

In this paper, the author presents a method that allows partial or complete reconstruction of the shape of perfectly conducting body from a multifrequency analysis of its back-scattered far-field. The method is based on the physical optics approximation. The fundamental equations are first recalled, then through the example of the sphere, the parameters of practical interest (bandwidth, number of frequencies, noisy data can be assessed). The effect of a variation of these parameters on the reconstruction process are then investigated.

Key words

Electromagnetic wave propagation Conducting body Back-scattering Surface reconstruction Geometric shape 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Imbriale (W. A.),Mittra (R.). The two-dimensional inversé scattering problem.IEEE Trans. AP, USA (sep. 1970),18, n∘ 5, pp. 633–642.Google Scholar
  2. [2]
    Boerner (W. M.).Ahluwalia (H. P. S.). On a set of continuous wave electromagnetic inverse scattering boundary conditions.Canad. J. Phys. (Dec. 1st 1972)50, n∘ 23, p. 3023.MATHMathSciNetGoogle Scholar
  3. [3]
    Boerner (W. M.),Vandenberghe (F. M.),Hamid (M. A. K.). Determination of the electrical radius ka of a circular cylindrical scatterer from the scattered field.Canad. J. Phys. (1971),49, p. 804.Google Scholar
  4. [4]
    Hong (S.),Borjson (S. L.). Short-pulse scattering by a cone. Direct and inverse.IEEE Trans. AP, USA (Jan. 1968),16, n∘ 1, pp. 98–102.Google Scholar
  5. [5]
    Bojarski (N.). Electromagnetic inverse scattering. First quarterly report to contract n∘ 19–72-C-0462 (Jun. 1972) Naval Air Systems Command, Washington, D.C.Google Scholar
  6. [6]
    Aas (J. A.). Reconstruction of surface profiles from their diffraction spectra.Appl. Opt., USA (Juil. 1972),11, n∘ 7, p. 1579.CrossRefGoogle Scholar
  7. [7]
    Moffatt (D. L.),Mains (R. K.). Detection and discrimination of radar targets.IEEE Trans. AP, USA (May 1975),23, n∘ 3, pp. 358–367.Google Scholar
  8. [8]
    Lewis (R. M.). Physical optics inverse diffraction.IEEE Trans. AP, USA (May 1969),17, n∘ 3, pp. 308–314.Google Scholar
  9. [9]
    Tabbara (W.). On an inverse scattering method.IEEE Trans. AP USA (March 1973),21, n∘ 2, pp. 245–247.Google Scholar
  10. [10]
    Tabbara (W.). On the feasibility of an inverse scattering method.IEEE Trans. AP, USA (May 1975),23, n∘ 3, pp. 446–448.Google Scholar
  11. [11]
    Young (J. D.). Radar imaging from ramp response signatures.IEEE Trans. AP USA (May 1976),24, n∘ 3, pp. 276–282.Google Scholar
  12. [12]
    Kennaugh (E. M.), Cosgriff (R. L.). The use of impulse response in electromagnetic scattering problem.IRE National Convention Records (1958), part 1, pp. 72–77.Google Scholar
  13. [13]
    Kennaugh (E. M.),Moffatt (D. L.). Transient and impulse response approximations.Proc. IEEE, USA (Aug. 1965),53, n∘ 8, pp. 893–901.CrossRefGoogle Scholar
  14. [14]
    Bleistein (N.). Physical optics farfield inverse scattering in the time domain.J. Acoust. Soc. Amer., (Dec. 1976),60, n∘ 6, pp. 1249–1255.CrossRefGoogle Scholar
  15. [15]
    Perry (W.). On the Bojarski-Lewis inverse scattering method.IEEE Trans. AP, USA (Nov. 1974),22, n∘ 6, pp. 826–829.CrossRefMathSciNetGoogle Scholar
  16. [16]
    Boerner (W.), Ho (C. H.). Development of physical optics far field inverse scattering (POFFIS) and its limitations.Inter. Symp. (June 18–22, 1979) Seattle (Wash.). Proc.IEEE, USA, pp. 240–243.Google Scholar
  17. [17]
    Gelfand (I. M.),Graev (M. I.),Vilenkim (N. Ya.). Generalized functions.Academic Press, New-York (1966),5, pp. 1–74.Google Scholar
  18. [18]
    Stratton (J. A.). Electromagnetic theory.McGraw-Hill, New-York (1941).MATHGoogle Scholar
  19. [19]
    Van Bladel (J.). Electromagnetic fields.McGraw-Hill, New-York (1964).Google Scholar
  20. [20]
    Adachi (S.). The nose on echo area of axially symmetric thin bodies having sharp apices.Proc. IEEE, USA (Aug. 1965),53, n∘ 8, p. 1067.CrossRefGoogle Scholar
  21. [21]
    Rosenbaum-Raz (S.). On scatterer reconstruction from far field data.IEEE Trans. AP, USA (Jan. 1976),24, n∘ 1, pp. 66–70.CrossRefGoogle Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1981

Authors and Affiliations

  • Walid Tabbara
    • 1
  1. 1.Laboratoire des Signaux et Systèmes, Groupe d’ElectromagnétismeCNRS - ESEGif-sur-YvetteFrance

Personalised recommendations