Skip to main content
Log in

Reconstruction d’obstacles métalliques de forme simple

Reconstruction of perfectly conducting bodies of simple shape

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Analyse

Dans cet article est décrite une méthode permettant par analyse multifréquentielle du champ rétrodiffusé par un obstacle parfaitement conducteur, de reconstruire totalement ou partiellement la forme de la cible. La méthode est basée sur l’approximation de l’optique physique. Après le rappel des équations de base, l’ étude du cas de la sphère permet de déterminer les paramètres d’intérêt pratique (bande spectrale, nombre de fréquences, données bruitées). On étudie la stabilité de la reconstruction lorsque ces paramètres varient.

Abstract

In this paper, the author presents a method that allows partial or complete reconstruction of the shape of perfectly conducting body from a multifrequency analysis of its back-scattered far-field. The method is based on the physical optics approximation. The fundamental equations are first recalled, then through the example of the sphere, the parameters of practical interest (bandwidth, number of frequencies, noisy data can be assessed). The effect of a variation of these parameters on the reconstruction process are then investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliographie

  1. Imbriale (W. A.),Mittra (R.). The two-dimensional inversé scattering problem.IEEE Trans. AP, USA (sep. 1970),18, n∘ 5, pp. 633–642.

    Google Scholar 

  2. Boerner (W. M.).Ahluwalia (H. P. S.). On a set of continuous wave electromagnetic inverse scattering boundary conditions.Canad. J. Phys. (Dec. 1st 1972)50, n∘ 23, p. 3023.

    MATH  MathSciNet  Google Scholar 

  3. Boerner (W. M.),Vandenberghe (F. M.),Hamid (M. A. K.). Determination of the electrical radius ka of a circular cylindrical scatterer from the scattered field.Canad. J. Phys. (1971),49, p. 804.

    Google Scholar 

  4. Hong (S.),Borjson (S. L.). Short-pulse scattering by a cone. Direct and inverse.IEEE Trans. AP, USA (Jan. 1968),16, n∘ 1, pp. 98–102.

    Google Scholar 

  5. Bojarski (N.). Electromagnetic inverse scattering. First quarterly report to contract n∘ 19–72-C-0462 (Jun. 1972) Naval Air Systems Command, Washington, D.C.

    Google Scholar 

  6. Aas (J. A.). Reconstruction of surface profiles from their diffraction spectra.Appl. Opt., USA (Juil. 1972),11, n∘ 7, p. 1579.

    Article  Google Scholar 

  7. Moffatt (D. L.),Mains (R. K.). Detection and discrimination of radar targets.IEEE Trans. AP, USA (May 1975),23, n∘ 3, pp. 358–367.

    Google Scholar 

  8. Lewis (R. M.). Physical optics inverse diffraction.IEEE Trans. AP, USA (May 1969),17, n∘ 3, pp. 308–314.

    Google Scholar 

  9. Tabbara (W.). On an inverse scattering method.IEEE Trans. AP USA (March 1973),21, n∘ 2, pp. 245–247.

    Google Scholar 

  10. Tabbara (W.). On the feasibility of an inverse scattering method.IEEE Trans. AP, USA (May 1975),23, n∘ 3, pp. 446–448.

    Google Scholar 

  11. Young (J. D.). Radar imaging from ramp response signatures.IEEE Trans. AP USA (May 1976),24, n∘ 3, pp. 276–282.

    Google Scholar 

  12. Kennaugh (E. M.), Cosgriff (R. L.). The use of impulse response in electromagnetic scattering problem.IRE National Convention Records (1958), part 1, pp. 72–77.

  13. Kennaugh (E. M.),Moffatt (D. L.). Transient and impulse response approximations.Proc. IEEE, USA (Aug. 1965),53, n∘ 8, pp. 893–901.

    Article  Google Scholar 

  14. Bleistein (N.). Physical optics farfield inverse scattering in the time domain.J. Acoust. Soc. Amer., (Dec. 1976),60, n∘ 6, pp. 1249–1255.

    Article  Google Scholar 

  15. Perry (W.). On the Bojarski-Lewis inverse scattering method.IEEE Trans. AP, USA (Nov. 1974),22, n∘ 6, pp. 826–829.

    Article  MathSciNet  Google Scholar 

  16. Boerner (W.), Ho (C. H.). Development of physical optics far field inverse scattering (POFFIS) and its limitations.Inter. Symp. (June 18–22, 1979) Seattle (Wash.). Proc.IEEE, USA, pp. 240–243.

  17. Gelfand (I. M.),Graev (M. I.),Vilenkim (N. Ya.). Generalized functions.Academic Press, New-York (1966),5, pp. 1–74.

    Google Scholar 

  18. Stratton (J. A.). Electromagnetic theory.McGraw-Hill, New-York (1941).

    MATH  Google Scholar 

  19. Van Bladel (J.). Electromagnetic fields.McGraw-Hill, New-York (1964).

    Google Scholar 

  20. Adachi (S.). The nose on echo area of axially symmetric thin bodies having sharp apices.Proc. IEEE, USA (Aug. 1965),53, n∘ 8, p. 1067.

    Article  Google Scholar 

  21. Rosenbaum-Raz (S.). On scatterer reconstruction from far field data.IEEE Trans. AP, USA (Jan. 1976),24, n∘ 1, pp. 66–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communication présentée à Paris le 30 janvier 1980 lors de la journée d’étude sur laReconnaissance des formes et signatures radar organisée par la SEE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabbara, W. Reconstruction d’obstacles métalliques de forme simple. Ann. Télécommun. 36, 339–345 (1981). https://doi.org/10.1007/BF03000614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03000614

Mots clés

Key words

Navigation