The preparation of CoWO4/WO3 nanocomposite powder

  • Shao Gang-qin 
  • Guo Jing-kun 
  • Xie Ji-ren 
  • Duan Xing-long 
  • Wu Bo-lin 
  • Yuan Run-zhang 


Ammonium metatungstate and cobalt nitrate were mixed at the molecular level in distilled water and then spray-decomposed to CoWO4/WO3 nanocomposite powder. The particle morphology, crystalline size, forming course, chemical composition and phase structure of the powder were studied by SEM, TEM, DTA-TG, IR and XRD, respectively. Results show that the powder is homogeneous, spherical and nano-aggregated.

Key words

CoWO4/WO3 nanocomposite powder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K J A Brookes. News: Iard Materials at Euro PM 2002.Int ’ l. J. Ref. Metals & Hard Mater., 2003, 21: 81–103CrossRefGoogle Scholar
  2. 2.
    Z Y Zhang, M Muhammed. Thermochemical Decomposition of Cobalt Doped Ammonium Paratungstate Precursor.Thermochim Acta, 2003, 400(1-2): 235–245CrossRefGoogle Scholar
  3. 3.
    G Gille, B Szesny, K Dreyer, H van den Berg, J Schmidt, T Gestrich, G. Leitner. Submicron and Ultrafine Grained Hardmetals for Microdrills and Metal Cutting Inserts.Int’ l. J. Ref. Metals & Hard Mater., 2002, 20: 3–22CrossRefGoogle Scholar
  4. 4.
    E Lassner, W-D Schubert.Tungsten-Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. London, UK: Kluwer Academic/Plenum Publishers, 2000Google Scholar
  5. 5.
    G S Upadhyaya.Cemented Tungsten Carbides —Production, Properties, and Testing. New Jersey, USA: Noyes Publications, Westwood, 1998Google Scholar
  6. 6.
    B-K Kim, G-G Lee, G-H Ha, D-W Lee.Mechanochemical Process for Producing Fine WC/ Co Composite Powder. US Pat.: No. 5882376, 25 July, 1997Google Scholar
  7. 7.
    M Sherif El-Eskandarany, A A Mahday, H A Ahmed, A H Amer. Synthesis and Characterizations of Ball-Milled Nanocrystalline WC and Nanocomposite WC-Co Powders and Subsequent Consolidations.Journal of Alloys and Compounds, 2000, 312: 315–325CrossRefGoogle Scholar
  8. 8.
    Y T Zhu, A Manthiram. A New Route for the Synthesis of Tungsten Carbide-Cobalt Nanocomposite.J. Am. Ceram. Soc., 1990, 77(10): 2777–2778CrossRefGoogle Scholar
  9. 9.
    B V Krishna, K V Gaganpreet, H Bhunia. Synthesis of WC-Co Nanocomposites by Using Polymers asin situ Carbon Source.Int’ l. J. Nanoscience, 2002, 1(2): 139–148CrossRefGoogle Scholar
  10. 10.
    Z Y Zhang, S Wahlberg, M S Wang. Processing of Nanostructured WC-Co Powder from Precursor Obtained by Co-precipitation.NanoStruct. Mater., 1999, 12(1-4): 163–166CrossRefGoogle Scholar
  11. 11.
    Z-G Ban, L L Shaw. Synthesis and Processing of Nanostructured WC-Co Materials.J. Mater. Sci., 2002, 37: 3397–3403CrossRefGoogle Scholar
  12. 12.
    L E McCandlish, B H Kear, S-J Bhatia.Spray Conversion Process for the Production of Nanophase Composite Powders. World Pat.: W0 91/07244,30 May, 1991Google Scholar
  13. 13.
    L E McCandlish, B H Kear, B K Kim.Carbothermic Reaction Process for Making Nanophase WC-Co Powder. World Pat.:W0 93/02962, 18 Feb., 1993Google Scholar
  14. 14.
    G Q Shao, B L Wu, X L Duan, J R Xie, M K Wei, R Z Yuan.WC-Co Nanocrystalline Composite Powder without η Phases Produced on an Industrial Scale. Chinese Invention Pat.: ZL 99 1 16597.7, 13 Aug., 1999Google Scholar
  15. 15.
    G Q Shao, B L Wu, X L Duan, J R Xie, M K Wei, R Z Yuan. Low Temperature Carbonization of W-Co Salts Powder. In: E Ustundag and G Fishman eds.,Ceramic Engineering & Science Proceedings- 23rdAnnual Conference on Composites, Advanced Ceramics, Materials, and Structures: A, Ohio, USA: The American Ceramic Society, 1999: 45–50Google Scholar
  16. 16.
    G Q Shao, B L Wu, X L Duan, J R Xie, M K Wei, R Z Yuan. Nanocrystalline Grains & Superfine Particles of Tungsten Carbide-Cobalt Powders. In: N P Bansal and J P Singh eds.,Innovative Processing/ Synthesis: Ceramics, Glasses, Composites IV, Ohio, USA: The American Ceramic Society, 2000: 375–383Google Scholar
  17. 17.
    G Q Shao, X L Duan, B L Wu, J R Xie, M K Wei, R Z Yuan. Continuous Reduction Carburisation Mechanism of Precursor-Derived Nanocrystalline WC-Co. In: J P Singh, NP Bansal and E Ustundag eds.,Advances in Ceramic Matrix Composites VI, Ohio, USA: The American Ceramic Society, 2000: 207–217Google Scholar
  18. 18.
    G Q Shao, X L Duan, J R Xie, F Zhang, B L Wu, R Z Yuan. Forming & Controlling of WC-Co Nonmetal-Metal Nano-Composite Structure.J. Chin. Ceram. Soc. (in Chinese), 2002, 30(1): 40–44Google Scholar
  19. 19.
    G Q Shao, B L Wu, M K Wei, R Z Yuan. Developments of WC Hardmetals with Ultrafine Grain Size.J. Wuhan Univ. Technol. (in Chinese), 1999, 21 (6): 18–20Google Scholar
  20. 20.
    G Q Shao, B L Wu, X L Duan, J R Xie, M K Wei, R Z Yuan. Preparation of WC-Co Powder by the Fluidization Technology.ACTA Metall. Sinica (in Chinese), 1999, 35(2): 144–146Google Scholar
  21. 21.
    B L Wu, G Q Shao, X L Duan, J R Xie, M K Wei, R Z Yuan. Nanocrystalline Composite Powder of WC-Co Produced on an Industrial Scale.Mater. Rev. (in Chinese), 2000, 14(7): 55–58Google Scholar
  22. 22.
    G Q Snao, X L Duan, J R Xie, X H Yu, W F Zhang, R Z Yuan. Sintering of Nanocrystalline WC-Co Composite Powder.Reviews on Advanced Materials Science, 2003, 5(4): 281–286Google Scholar
  23. 23.
    R J Zeng, B Rand. Comparison of Various Particle Sizing Techniques.J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2000, 15 (2): 7–14Google Scholar

Copyright information

© Wuhan University of Technology 2004

Authors and Affiliations

  • Shao Gang-qin 
    • 1
    • 2
  • Guo Jing-kun 
    • 2
  • Xie Ji-ren 
    • 1
  • Duan Xing-long 
    • 1
  • Wu Bo-lin 
    • 1
  • Yuan Run-zhang 
    • 1
  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis & ProcessingWuhan University of TechnologyWuhanChina
  2. 2.Shanghai Institute of CeramicsChinese Academy of ScienceChina

Personalised recommendations