Advertisement

Annales Des Télécommunications

, Volume 50, Issue 2, pp 205–216 | Cite as

PROCESSUS D’ÉVOLUTION ET RÉSEAUX

  • Giséle Umbhauer
Article
  • 12 Downloads

Résumé

Ľarticle approche la coévolution de différents réseaux par la théorie des jeux évolutionnistes. Il examine ľimpact de processus ďapprentissage et ď expérimentation. Ľétude, dans un premier temps, est restreinte aux contextes oú chaque agent est en interaction avec ľensemble des agents économiques. Elle compare ensuite les résultats ainsi obtenus aux résultats qui découlent ďune confrontation limitée, où chaque acteur n’interagii qu’avec les agents situés dans son voisinage.

Mots clés

Analyse économique Microéconomie Concurrence Théorie jeu Evolution Réseau télécommunication Apprentissage Expérimentation Réseau agent économique 

Evolutionary processes and networks

Abstract

The paper deals with coevolution of different networks: it provides an approach based on evolutionary game theory. It examines the impact of learning and experimentation processes. It firstly yields results in a context where each agent directly interacts with all the other agents. Then it contrasts these results with the ones obtained when everybody only cares about the actions played by the agents in the neighborhood.

Key words

Economic analysis Microeconomics Competition Game theory Evolution Telecommunication network Learning Experimentation Economic agent network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Anderlini (L.), Ianni (A.). Path dépendance and learning from neighbors.Mimeo St John’s College, Cambridge (1993).Google Scholar
  2. [2]
    Bak (P.),Chen (K.). Self-organized criticality and fluctuations in economics.Mimeo Santa Fe Institute (1992).Google Scholar
  3. [3]
    Berninghaus (K. S.), Schwalbe (U.). Learning and adaptation processes in games with a local interaction structure.Mimeo, University of Mannheim (1992).Google Scholar
  4. [4]
    Binmore (K.), Samuelson (L.). Evolutionary stability in repeated games played by finite automata.Journal of Economic theory (1992),57, pp. 278–306.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Blume (L. E.). The statistical mechanics of best-response strategy revision.Mimeo Cornell University, New-York (1994).Google Scholar
  6. [6]
    Bomze (I. M.). Non cooperative 2-person games in biology: a classification.International Journal of Game Theory (1986),15, pp. 31–59.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Canning (D.). Average behavior in learning models.Journal of Economic Theory (1992),57, pp. 442–472.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Darwin (C.). On the origin of species by means of natural selection.Cambridge London, reprinted in Harvard University Press (1859).Google Scholar
  9. [9]
    Ellison (G.). Learning, local interaction, and coordination.Econometrica (1993),61, pp. 1047–1071.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Fisher (R. A.). The genetical theory of natural selection.Clarendon Press, Oxford (1930).MATHGoogle Scholar
  11. [11]
    Foster (D.), Young (P.). Stochastic evolutionary game dynamics.Theoretical Population Biology (1990a),38, pp. 219–232.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Foster (D.), Young (P.). Cooperation in the short and in the long run.Games and Economic Behavior (1990b),3, pp. 145–156.Google Scholar
  13. [13]
    Freidlin (M. I.),Wentzell (A. D.). Random perturbations of dynamical systems.Springer Verlag (1984).Google Scholar
  14. [14]
    Friedman (D.). Evolutionary games in economics.Econometrica (1991),59, pp. 637–666.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Hamilton (W. D.). The genetical evolution of social behavior.Journal of Theoretical Biology (1964),7, pp. 1–52.CrossRefGoogle Scholar
  16. [16]
    Harsanyi (J.), Selten (R.). A general theory of equilibrium selection in games.MIT Press, Cambridge (1988).MATHGoogle Scholar
  17. [17]
    Hofbauer (J.), Sigmund (K.). The theory of evolution and dynamical systems, mathematical aspects of solution.Cambridge University Press, Cambridge (1988).Google Scholar
  18. [18]
    Kandori (M.), Mailath (G. J.), Rob (R.). Learning, mutation, and long run equilibria in games.Econometrica (1993),61, pp. 29–56.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Maynard Smith (J.). Evolution and the theory of games.Cambridge University Press, Cambridge, (1982).MATHGoogle Scholar
  20. [20]
    Myerson (R. B.), Pollock (G. B.), Swinkels (J. M.). Viscous population equilibria.Games and Economic Behavior (1991),3, pp. 101–109.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Noldeke (G.), Samuelson (L.). An evolutionary analysis of backward and forward induction.Games and Economic Behavior (1993),5, pp. 425–454.CrossRefMathSciNetGoogle Scholar
  22. [22]
    Samuelson (L.). Stochastic stability in games with alternative best replies.Working Paper 9122, University of Wisconsin, Madison (1991).Google Scholar
  23. [23]
    Schelling (T. C). The strategy of conflict.Harvard University, Cambridge (1960).Google Scholar
  24. [24]
    Selten (R.). Reexamination of the perfectness concept for equilibrium points in extensive games.International Journal of Game Theory (1975),4, pp. 25–55.MATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    Selten (R.). A note on evolutionary stable strategies in asymmetrical animal conflicts.Journal of Theoretical Biology (1980),84, pp. 93–101.MathSciNetCrossRefGoogle Scholar
  26. [26]
    Selten (R.). Evolutionary stability in extensive two-person games.Mathematical Social Sciences5, pp. 269–363.Google Scholar
  27. [27]
    Swinkels (J. M.). Evolutionary stability with equilibrium entrants.Journal of Economic Theory (1992),57, pp. 306–332.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Taylor (P. D.), Jonker (L. B.). Evolutionary stable strategies and game dynamics.Mathematical Bioscience (1978),40, pp. 145–156.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Umbhauer (G.). Evolution and forward induction in game theory.Revue Internationale de Systémique (1993),7, pp. 613–626.Google Scholar
  30. [30]
    Volterra (V.). Leçons sur la théorie mathématique de la lutte pour la vie.Gauthier-Villars Paris (1931).Google Scholar
  31. [31]
    Young (P.). The evolution of conventions.Econometrica (1993),61, pp. 57–84.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Giséle Umbhauer
    • 1
  1. 1.Bureau ďéconomie théorique et appliquéeStrasbourg CedexFrance

Personalised recommendations