Annales Des Télécommunications

, Volume 50, Issue 3–4, pp 416–424 | Cite as

An efficient method for the TE- and TM-fields from an array on a corrugated ground plane

  • Sven-Erik Sandström


The far-field for the scalar te- and TM-cases is computed in three dimensions for a system radiating into the upper half-space. An array of sources is situated on the boundary and in between a number of infinite and equidistant rectangular grooves. Since the primary objective is to study the exterior problem, the sources are assumed to be known. Fourier transformation is used to derive matrix equations for the set of two-dimensional problems that correspond to polar directions in the far-field. When comparing the results for the two polarizations, the influence of the grooves in the ground plane is found to be weaker for the TM-case. The effects of certain singularities in the Fourier integrals are investigated by means of asymptotic methods.

Key words

Antenna array Electromagnetic field te mode tm mode Fourier transformation Groove Periodic structure 

Une méthode efficace de calcul des champs te et tm d’une antenne en réseau sur plan de masse cannelé


Le champ lointain dans les cas scalaires te et tm est calculé en trois dimensions pour un système rayonnant vers le demi-espace supérieur. Une configuration de sources est située sur le bord et entre un nombre de cannelures infiniment longues et équidistantes. Comme l’objectif est d’étudier le problème extérieur, les sources sont considérées connues. Une transformation de Fourier est utilisée pour obtenir des équations matricielles pour l’ensemble des problèmes à deux dimensions qui correspond à des directions polaires du champ lointain. La comparaison de l’effet des cannelures pour les deux polarisations montre que l’influence est plus faible pour le cas tm. Les effets de certaines singularités dans les intégrales de Fourier sont analysés par des méthodes asymptotiques.

Mots clés

Antenne réseau Champ électromagnétique Mode te Mode tm Transformation Fourier Rainure Structure périodique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sandström (S.-E.). On the effect of a modified ground plane for a simple source configuration.J. Acoust. Soc. Am. (1990),88, pp. 566–569.CrossRefGoogle Scholar
  2. [2]
    Sandström (S.-E.). Radiation from a simple source situated on a modified ground plane.Wave Motion (1991),14, pp. 225–232.MATHCrossRefGoogle Scholar
  3. [3]
    Sandström (S.-E.). A comparison between two techniques for a source on a modified ground plane and an investigation of the case with a finite number of troughs.J. Acoust. Soc. Am. (1992),92, pp. 1754–1758.CrossRefGoogle Scholar
  4. [4]
    Barkeshli (K.), Volakis (J. L.). Scattering from narrow rectangular filled grooves.IEEE Trans. AP (1991),39, pp. 804–810.Google Scholar
  5. [5]
    Barkeshli (K.), Volakis (J. L.). Electromagnetic scattering from an aperture formed by a rectangular cavity recessed in a ground plane.J. Electromagn. Waves Appl. (1991),5, pp. 715–734.Google Scholar
  6. [6]
    Sandström (S.-E.), Tayeb (G.), Petit (R.). Lossy multistep lamellar gratings in conical diffraction mountings: an exact eigenfunction solution.J. Electromagn. Waves Appl. (1993),7, pp. 631–649.CrossRefGoogle Scholar
  7. [7]
    Shamansky (H.), Dominer (A.), Wang (N.). A physical basis formulation for the electromagnetic backscattering by a finite- length rectangular trough in a ground plane.IEEE Trans. AP (1993),41, pp. 397–402.Google Scholar
  8. [8]
    Facq (P.). Diffraction par des structures cylindriques périodiques limitées.Ann. Télécommun. (1976),31, pp. 99–107.Google Scholar
  9. [9]
    Sandström (S.-E.). Scalar diffraction by rectangular apertures in a thick screen.J. Mod. Optic, to appear.Google Scholar
  10. [10]
    Josefsson (L. G.). Analysis of longitudinal slots in rectangular waveguides.IEEE Trans. AP (1987),35, pp. 1351–1357.Google Scholar
  11. [11]
    Golub (G. H.), Loan (C. F. van. Matrix computations.Johns Hopkins, Baltimore (1989).MATHGoogle Scholar
  12. [12]
    Morse (P. M.), Feshbach (H.) Methods of theoretical physics. Particularly Chapter 7, Section 2.McGraw-Hill, New York (1953).MATHGoogle Scholar
  13. [13]
    Kress (R.). Linear integral equations.Applied Mathematical Sciences 82, Springer, Berlin (1989).Google Scholar
  14. [14]
    Olver (F. W. J.). Asymptotics and special functions.Academic, New York (1974).Google Scholar
  15. [15]
    Jackson (J. D.). Classical electrodynamics.Wiley, New York (1975).MATHGoogle Scholar
  16. [16]
    Leong (M. S.), Kooi Chandra (P.S.). Radiation from a flanged parallel-plate waveguide: solution by moment method with inclusion of edge condition.Proc. IEE (1988),H135, pp. 249–255.Google Scholar
  17. [17]
    Gradshteyn (I. S.), Ryzhik (I. M.). Table of integrals, series and products.Academic, New York (1980).MATHGoogle Scholar
  18. [18]
    Abramowitz (M.), Stegun (I. A.). Handbook of mathematical functions.Dover, New York (1972).MATHGoogle Scholar
  19. [19]
    Bleistein (N.). Mathematical methods for wave phenomena.Academic, San Diego (1984).MATHGoogle Scholar
  20. [20]
    Sarkar (T. K.), Yang (X.), Arvas (E.). A limited survey of various conjugate gradient methods for solving complex matrix equations arising in electromagnetic wave interactions.Wave Motion (1988),10, pp. 527–546.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Dongarra (J. J.). Performance of various computers using standard linear equations software.Technical Memorandum CS -89-85, Computer Science Department, University of Tennessee, Knoxville, TN 37996-1301 (1993).Google Scholar
  22. [22]
    Kuo (C.-C. J.), Levy (B. C.). Discretization and solution of elliptic pdes. A digital signal processing approach.Proc. IEEE (1990),78, pp. 1808–1842.CrossRefGoogle Scholar
  23. [23]
    Yaghjian (A. D.). Augmented electric- and magnetic-field integral equations.Radio Science (1981),16, pp. 987–1001.CrossRefGoogle Scholar
  24. [24]
    Jan (C.-G.), Hsu (P.), Wu (R.-B.). Moment method analysis of sidewall inclined slots in rectangular waveguides.IEEE Trans. AP (1991),39, pp. 68–73.Google Scholar
  25. [25]
    Forooraghi (K.), Kildal (P.-S.). Reduction of second-order beams in slotted waveguide arrays using baffles.ICAP 91, York (April 1991).Google Scholar
  26. [26]
    Kok (Y.-L.). Boundary-value solution to.ejectromagnetic scattering by a rectangular groove in a ground plane.J. Opt. Soc. Am. (1992),A9, pp. 302–311.CrossRefGoogle Scholar
  27. [27]
    Ramo (S.), Whinnery (J.R.), Duzer T. Van. Fields and waves in communication electronics.Wiley, New York (1965).Google Scholar
  28. [28]
    Stutzman (W. L.), Thiele (G. A.). Antenna theory and design.Wiley, New York (1981).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Sven-Erik Sandström
    • 1
    • 2
  1. 1.Institute of Theoretical PhysicsChalmers University of TechnologyGöteborgSuède
  2. 2.Department of Sensor TechnologyNational Defence Research EstablishmentLinköpingSuède

Personalised recommendations