Annales des Télécommunications

, Volume 43, Issue 7–8, pp 423–433 | Cite as

The modelling of semiconductor laser diodes

  • Roel Baets
  • Jean-Pierre Van de Capelle
  • Patrick Vankwikelberge


This paper presents a number of models for semiconductor laser diodes. The models are divided into different categories, according to the independent variables they include. The use of these different models is critically investigated and the advantages of these models are compared and discussed. A number of models are elaborated into mathematical detail and some examples are discussed.

Key words

Semiconductor laser Modelization Physical model Comparative study Static model Dynamic model Independent variable Gain 

La MODÉlisation de lasers semiconducteurs


Cet article présente différents modèles de lasers semiconducteurs, ceux-ci étant classés selon les variables indépendantes considérées. Les différents modèles sont étudiés et comparés. Quelques modèles sont élaborés formellement et présentés avec des exemples d’application.

Mots clés

Laser semiconducteur Modélisation Modèle physique Etude comparative Modèle statique Modèle dynamique Variable indépendante Gain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Buus (J.). Principles of semiconductor laser modelling.IEE Proc, Part. J (Feb. 1985),132, n° 1.Google Scholar
  2. [2]
    Van de Capelle (J. P.), Vankwikelberge (P.), Baets (R.). Lateral current spreading inDh lasers above threshold.IEE Proceedings, Part. J (1986),133, n° 2, pp. 143–148.Google Scholar
  3. [3]
    Baets (R.), Laoasse (P. E.). Longitudinal static-field model forDh lasers.Electr. Lett. (1984),20, pp. 41–42.CrossRefGoogle Scholar
  4. [4]
    Van Roey (J.), Lagasse (P. E.). Coupled-beam analysis of integrated-optic Bragg reflectors.J. Opt. Soc. Am. (Mar. 1982),72, n° 3, pp. 337–342.CrossRefGoogle Scholar
  5. [5]
    Van de Capelle (J. P.), Baets (R.), Lagasse (P. E.). Twodimensional model for C3- and external cavity lasers.ESSDERC conference proceedings, Italy (1987), pp. 1025–1028.Google Scholar
  6. [6]
    Baets (R.), Van de Capelle (J. P.), Lagasse (P. E.). Longitudinal analysis of semiconductor lasers with low Reflectivity Facets.IEEE J. Quantum Electronics (1985),21, n° 6, pp. 693–699.CrossRefGoogle Scholar
  7. [7]
    Yonezu (H.), Sabuma (I.), Kobayashi (K.), Kamejima (T.), Veno (M.), Nannichi (Y.). A GaAs-AlxGa1-xAs. Double heterostructure planar stripe laser.Jap. J. Appl. Phys. (1973),12, n° 10, pp. 1585–1592.CrossRefGoogle Scholar
  8. [8]
    Verbeek (B. H.), Opschoor (J.), Vankwikelberge (P.), Van de Capelle (J. P.), Baets (R.). Analysis of index-guided AlGaAs lasers with mode filter.Elect. Lett. (1986),22, n° 19, pp. 1022–1023.CrossRefGoogle Scholar
  9. [9]
    Vankwikelberge (P.), Van de Capelle (J. P.), Baets (R.), Verbeek (B. M.), Opschoor (J.). Local normal mode analysis of index-guided AlGaAs lasers with mode filter.IEEE J. Quantum Electronics (1987),23, n° 6, pp. 730–737.CrossRefGoogle Scholar
  10. [10]
    Van de Capelle (J. P.), Baets (R.), Lagasse (P. E.). Multilongitudinal mode model for cleaved cavity lasers.IEE Proceedings, Part. J, UK (1987),134, n° 1, pp. 55–64.Google Scholar
  11. [11]
    Van de Capelle (J. P.), Baets (R.), Lagasse (P. E.). Multilongitudinal mode model for cleaved coupled cavity lasers.IEE Proceedings, Part. J. (1987),134, n° 4, pp. 232–248.Google Scholar
  12. [12]
    Wilt (D. P.), Yartv (A.). A self-consistent static model for a double heterostructure laser.IEEE J. Quantum Electron, USA (1981),17, n° 9, pp. 1941–1949.CrossRefGoogle Scholar
  13. [13]
    Tucker (R. S.). High-speed modulation of semiconductor lasers.IEEE Trans, on Electron Devices (Dec. 1985),32, n° 12, pp. 2572–2584.CrossRefGoogle Scholar
  14. [14]
    Lau (K. Y.), Yariv (A.). Effect of superluminescence on the modulation response of semiconductor lasers.Appl. Phys. Lett. (Mar. 15, 1982),40, n° 6.Google Scholar
  15. [15]
    Kawaguchi (H.). Optical bistable-switching operation in semiconductor lasers with inhomogeneous excitation.IEE Proc. (Aug. 1982),129, Part. I, n° 4.Google Scholar
  16. [16]
    Ueno (M.), Lang (R.). Conditions for self-sustained pulsation and bistability in semiconductor lasers.J. Appl. Phys. (Aug. 15, 1985),58, n° 4.Google Scholar
  17. [17]
    Wong (Y. L.), Carroll (J. E.). A travelling wave rate equation analysis for semiconductor lasers.Solid-state Electronics (1987),30, n° 1, pp. 13–19.CrossRefGoogle Scholar
  18. [18]
    Schubert (M.), Wilhelmi (B.). Nonlinear optics and quantum electronics. Chapt. 1,John Wiley (1986).Google Scholar
  19. [19]
    Joyce (W. B.). Current-crowded carrier confinement in double-heterostructure lasers.J. Appl. Phys. (May 1980),51, n° 5, pp. 2394–2401.CrossRefMathSciNetGoogle Scholar
  20. [20]
    Habermayer (I.). Nonlinear circuit model for semiconductor lasers.Optical and Quantum Electronics (1981),13, pp. 461–468.CrossRefGoogle Scholar
  21. [21]
    Demokan (M.S.). The dynamics of diode lasers at microwave frequencies.GEC Journal of Research (1986),4, n° 1, pp. 15–27.Google Scholar
  22. [22]
    Hildebrand (F. B.). Finite-difference equations and simulations. Chapt.2,Prentice-Hall, Inc. (1968).Google Scholar
  23. [23]
    Vankwikelberge (P.), Baets (R.). A network implementation of the travelling wave rate equations. Applications to multi-segment diode lasers and to diode laser amplifiers. To be published.Google Scholar
  24. [24]
    Demokan (M. S.). A model of a diode laser actively mode-locked by gain modulation.Int. J. Electronics (1986),60, n° 1, pp. 67–85.CrossRefGoogle Scholar
  25. [25]
    Boers (P. M.), Vlaardingerbroek (M. T.), Danielsen (M.). Dynamic behaviour of semiconductor lasers.Electr. Lett. (May 15, 1975),11, n° 10, pp. 206–208.CrossRefGoogle Scholar
  26. [26]
    Casey (H. C.), Panish (M. B.). Heterostructure lasers. Part. A, chap. 3,Academic Press (1978).Google Scholar
  27. [27]
    McKelvey (J. P.). Solid state and semiconductor physics.Harper (1966).Google Scholar
  28. [28]
    Lasher (G.), Stern (F.). Spontaneous and stimulated recombination radiation in semiconductors.Phys. Rev. A (1964),133a, pp. 553–562.Google Scholar
  29. [29]
    Halperin (B. I.), Lax (M.). Impurity-band tails in the high-density limit. I. Minimum counting methods.Phys. Rev. (Aug. 12, 1966),148, pp. 722–740.CrossRefGoogle Scholar
  30. [30]
    Kane (E. O.). Band structure of indium antimonide.J. Phys. Chem. Solids (1957),1, pp. 249–261.CrossRefGoogle Scholar
  31. [31]
    Hwang (C. J.). Properties of spontaneous and stimulated emission in GaAs junction lasers. II. Temperature dependence of threshold current and excitation dependence of superradiance spectra.Phys. Rev. B (Nov. 15, 1970),2, pp. 4126–4134.CrossRefGoogle Scholar
  32. [32]
    Stern (F.). Band-tail model for optical absorption and for the mobility edge in amorphous silicon.Phys. Rev. B (Apr. 15, 1971),3, pp. 2636–2645.CrossRefGoogle Scholar
  33. [33]
    Casey (H. C.), Stern (F.). Concentration-dependent absorption and spontaneous emission of heavily doped GaAs.J. Appl. Phys. (Feb. 1976),47, n° 2, pp. 631–642.CrossRefGoogle Scholar
  34. [34]
    Yamada (M.), Suematsu (Y.). Analysis of gain suppression in undoped injection lasers.J. Appl. Phys. (Apr. 1981),52, n° 4, pp. 2653–2664.CrossRefGoogle Scholar
  35. [35]
    Asada (M.), Suematsu (Y.). Density-matrix theory of semiconductor lasers with relaxation broadening model. Gain and gain-suppression in semiconductor lasers.IEEE J. Quantum Electron. (May 1985),21, n° 5, pp. 434–442.CrossRefGoogle Scholar
  36. [36]
    Marcuse (D.). Principles of quantum electronics. Chapt. 7,Academic Press (1980).Google Scholar
  37. [37]
    Morthier (G.), Vankwikelberge (P.), Van de Capelle (J. P.), Baets (R.). Gain calculations in quaternary III-V compounds. Internal report, Lab. Electromagnetism and Acoustics.Univ. Gent-Imec (July 1987).Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1988

Authors and Affiliations

  • Roel Baets
    • 1
  • Jean-Pierre Van de Capelle
    • 1
  • Patrick Vankwikelberge
    • 1
  1. 1.Laboratory of Electromagnetism and AcousticsRijksuniversiteit Gent-imecGentBelgium

Personalised recommendations