Skip to main content
Log in

The modelling of semiconductor laser diodes

La MODÉlisation de lasers semiconducteurs

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

This paper presents a number of models for semiconductor laser diodes. The models are divided into different categories, according to the independent variables they include. The use of these different models is critically investigated and the advantages of these models are compared and discussed. A number of models are elaborated into mathematical detail and some examples are discussed.

Résumé

Cet article présente différents modèles de lasers semiconducteurs, ceux-ci étant classés selon les variables indépendantes considérées. Les différents modèles sont étudiés et comparés. Quelques modèles sont élaborés formellement et présentés avec des exemples d’application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buus (J.). Principles of semiconductor laser modelling.IEE Proc, Part. J (Feb. 1985),132, n° 1.

  2. Van de Capelle (J. P.), Vankwikelberge (P.), Baets (R.). Lateral current spreading inDh lasers above threshold.IEE Proceedings, Part. J (1986),133, n° 2, pp. 143–148.

    Google Scholar 

  3. Baets (R.), Laoasse (P. E.). Longitudinal static-field model forDh lasers.Electr. Lett. (1984),20, pp. 41–42.

    Article  Google Scholar 

  4. Van Roey (J.), Lagasse (P. E.). Coupled-beam analysis of integrated-optic Bragg reflectors.J. Opt. Soc. Am. (Mar. 1982),72, n° 3, pp. 337–342.

    Article  Google Scholar 

  5. Van de Capelle (J. P.), Baets (R.), Lagasse (P. E.). Twodimensional model for C3- and external cavity lasers.ESSDERC conference proceedings, Italy (1987), pp. 1025–1028.

  6. Baets (R.), Van de Capelle (J. P.), Lagasse (P. E.). Longitudinal analysis of semiconductor lasers with low Reflectivity Facets.IEEE J. Quantum Electronics (1985),21, n° 6, pp. 693–699.

    Article  Google Scholar 

  7. Yonezu (H.), Sabuma (I.), Kobayashi (K.), Kamejima (T.), Veno (M.), Nannichi (Y.). A GaAs-Al x Ga1-x As. Double heterostructure planar stripe laser.Jap. J. Appl. Phys. (1973),12, n° 10, pp. 1585–1592.

    Article  Google Scholar 

  8. Verbeek (B. H.), Opschoor (J.), Vankwikelberge (P.), Van de Capelle (J. P.), Baets (R.). Analysis of index-guided AlGaAs lasers with mode filter.Elect. Lett. (1986),22, n° 19, pp. 1022–1023.

    Article  Google Scholar 

  9. Vankwikelberge (P.), Van de Capelle (J. P.), Baets (R.), Verbeek (B. M.), Opschoor (J.). Local normal mode analysis of index-guided AlGaAs lasers with mode filter.IEEE J. Quantum Electronics (1987),23, n° 6, pp. 730–737.

    Article  Google Scholar 

  10. Van de Capelle (J. P.), Baets (R.), Lagasse (P. E.). Multilongitudinal mode model for cleaved cavity lasers.IEE Proceedings, Part. J, UK (1987),134, n° 1, pp. 55–64.

    Google Scholar 

  11. Van de Capelle (J. P.), Baets (R.), Lagasse (P. E.). Multilongitudinal mode model for cleaved coupled cavity lasers.IEE Proceedings, Part. J. (1987),134, n° 4, pp. 232–248.

    Google Scholar 

  12. Wilt (D. P.), Yartv (A.). A self-consistent static model for a double heterostructure laser.IEEE J. Quantum Electron, USA (1981),17, n° 9, pp. 1941–1949.

    Article  Google Scholar 

  13. Tucker (R. S.). High-speed modulation of semiconductor lasers.IEEE Trans, on Electron Devices (Dec. 1985),32, n° 12, pp. 2572–2584.

    Article  Google Scholar 

  14. Lau (K. Y.), Yariv (A.). Effect of superluminescence on the modulation response of semiconductor lasers.Appl. Phys. Lett. (Mar. 15, 1982),40, n° 6.

    Google Scholar 

  15. Kawaguchi (H.). Optical bistable-switching operation in semiconductor lasers with inhomogeneous excitation.IEE Proc. (Aug. 1982),129, Part. I, n° 4.

  16. Ueno (M.), Lang (R.). Conditions for self-sustained pulsation and bistability in semiconductor lasers.J. Appl. Phys. (Aug. 15, 1985),58, n° 4.

    Google Scholar 

  17. Wong (Y. L.), Carroll (J. E.). A travelling wave rate equation analysis for semiconductor lasers.Solid-state Electronics (1987),30, n° 1, pp. 13–19.

    Article  Google Scholar 

  18. Schubert (M.), Wilhelmi (B.). Nonlinear optics and quantum electronics. Chapt. 1,John Wiley (1986).

  19. Joyce (W. B.). Current-crowded carrier confinement in double-heterostructure lasers.J. Appl. Phys. (May 1980),51, n° 5, pp. 2394–2401.

    Article  MathSciNet  Google Scholar 

  20. Habermayer (I.). Nonlinear circuit model for semiconductor lasers.Optical and Quantum Electronics (1981),13, pp. 461–468.

    Article  Google Scholar 

  21. Demokan (M.S.). The dynamics of diode lasers at microwave frequencies.GEC Journal of Research (1986),4, n° 1, pp. 15–27.

    Google Scholar 

  22. Hildebrand (F. B.). Finite-difference equations and simulations. Chapt.2,Prentice-Hall, Inc. (1968).

  23. Vankwikelberge (P.), Baets (R.). A network implementation of the travelling wave rate equations. Applications to multi-segment diode lasers and to diode laser amplifiers. To be published.

  24. Demokan (M. S.). A model of a diode laser actively mode-locked by gain modulation.Int. J. Electronics (1986),60, n° 1, pp. 67–85.

    Article  Google Scholar 

  25. Boers (P. M.), Vlaardingerbroek (M. T.), Danielsen (M.). Dynamic behaviour of semiconductor lasers.Electr. Lett. (May 15, 1975),11, n° 10, pp. 206–208.

    Article  Google Scholar 

  26. Casey (H. C.), Panish (M. B.). Heterostructure lasers. Part. A, chap. 3,Academic Press (1978).

  27. McKelvey (J. P.). Solid state and semiconductor physics.Harper (1966).

  28. Lasher (G.), Stern (F.). Spontaneous and stimulated recombination radiation in semiconductors.Phys. Rev. A (1964),133a, pp. 553–562.

    Google Scholar 

  29. Halperin (B. I.), Lax (M.). Impurity-band tails in the high-density limit. I. Minimum counting methods.Phys. Rev. (Aug. 12, 1966),148, pp. 722–740.

    Article  Google Scholar 

  30. Kane (E. O.). Band structure of indium antimonide.J. Phys. Chem. Solids (1957),1, pp. 249–261.

    Article  Google Scholar 

  31. Hwang (C. J.). Properties of spontaneous and stimulated emission in GaAs junction lasers. II. Temperature dependence of threshold current and excitation dependence of superradiance spectra.Phys. Rev. B (Nov. 15, 1970),2, pp. 4126–4134.

    Article  Google Scholar 

  32. Stern (F.). Band-tail model for optical absorption and for the mobility edge in amorphous silicon.Phys. Rev. B (Apr. 15, 1971),3, pp. 2636–2645.

    Article  Google Scholar 

  33. Casey (H. C.), Stern (F.). Concentration-dependent absorption and spontaneous emission of heavily doped GaAs.J. Appl. Phys. (Feb. 1976),47, n° 2, pp. 631–642.

    Article  Google Scholar 

  34. Yamada (M.), Suematsu (Y.). Analysis of gain suppression in undoped injection lasers.J. Appl. Phys. (Apr. 1981),52, n° 4, pp. 2653–2664.

    Article  Google Scholar 

  35. Asada (M.), Suematsu (Y.). Density-matrix theory of semiconductor lasers with relaxation broadening model. Gain and gain-suppression in semiconductor lasers.IEEE J. Quantum Electron. (May 1985),21, n° 5, pp. 434–442.

    Article  Google Scholar 

  36. Marcuse (D.). Principles of quantum electronics. Chapt. 7,Academic Press (1980).

  37. Morthier (G.), Vankwikelberge (P.), Van de Capelle (J. P.), Baets (R.). Gain calculations in quaternary III-V compounds. Internal report, Lab. Electromagnetism and Acoustics.Univ. Gent-Imec (July 1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baets, R., Van de Capelle, JP. & Vankwikelberge, P. The modelling of semiconductor laser diodes. Ann. Télécommun. 43, 423–433 (1988). https://doi.org/10.1007/BF02999712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02999712

Key words

Mots clés

Navigation