Annales Des Télécommunications

, Volume 49, Issue 3–4, pp 132–136 | Cite as

An analysis of the Wigner higher order spectra of multicomponent signals

  • Ljubiša Stanković


The analysis of multicomponent signal representation by the Wigner higher order spectra is done. It is shown that the cross-terms can be removed only for an odd order, having equal number of conjugated and nonconjugated terms in the local multidimensional moment function. A method for higher order time-multifrequency analysis that eliminates cross-terms is proposed. This method turns out to be a dual definition of the L-Wigner distribution. The theory is illustrated by the numerical example.

Key words

Signal analysis Spectral analysis Complex signal Frequency time representation Spectral window Time window 

Analyse des spectres de wigner d#x2019;ordre sup#x00C9;rieur de signaux composites


L’article étudie les spectres de Wigner d#x2019;ordre supérieur de fonctions déterministes composites. Ce sont des fonctions du temps et d’un nombre de pulsations égal à l’ordre du spectre. Les termes d'interaction entre les composantes du signal ne peuvent être supprimés que si l’ordre est impair, avec un nombre égal de termes conjugués et non conjugués dans le moment local multidimensionnel. L’élimination des termes d’interaction est possible par une méthode équivalente à une définition duale de la distribution L-Wigner. Un exemple numérique illustre la théorie.

Mots clés

Analyse signal Analyse spectrale Signal complexe Représentation temps fréquence Fenêtre spectrale Fenêtre temporelle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Mendel (I. M.). Tutorial on higher-order statistics (spectra) in signal processing and system theory : theoretical results and some applications. IEEE Proc. (mars 1991), 79, no 3, pp. 278-305.Google Scholar
  2. [2]
    Fonollosa (J. R.), Nikias (C. L.). Wigner higher order moment spectra : definitions, properties, computation and application to transient signal analysis. IEEE Trans. Signal Processing (jan. 1993), 41, no 1, pp. 245-266.Google Scholar
  3. [3]
    Stanković (LJ.), Stanković (S.). Wigner distribution of noisy signals. IEEE Trans. Signal Processing (fév. 1993), 41, no 2, pp. 956-960.Google Scholar
  4. [4]
    Stanković (LJ.). A method for time-frequency analysis. IEEE Trans. Signal Processing (jan. 1994), 42, no 1, to be published.Google Scholar
  5. [5]
    Stanković (S.), Stanković (U.). Wigner distribution generalization by scaling. Proc. of Yugoslav Conf. ETAN, Part 3 (sept. 1992), Kopaonik, pp. 61-68.Google Scholar
  6. [6]
    Stanković (LT.), Stanković (S.). On the instantaneous frequency presentation by some time-frequency distributions. Generalized Wigner distribution. IEEE Trans. Signal Processing, accepted for publication.Google Scholar
  7. [7]
    Boashash (B.). Estimating and interpreting the instantaneous frequency of a signal. Part I and part II. Proc. IEEE (avr. 1992), 80, no 4, pp. 519-568.Google Scholar
  8. [8]
    Flandrin (P.). Some features of time-frequency representation of multicomponent signals. Proc. IEEE ICASSP 84 (1984), pp. 41B.4.1-4.4.Google Scholar
  9. [9]
    Kadambe (S.), Boudreaux-Bartels (G. F.). A comparison of the existence of cross terms in the Wigner distribution and square magnitude of the wavelet transform and short time Fourier transform.IEEE Trans. Signal Processing (oct. 1992),40, pp. 2498–2517.MATHCrossRefGoogle Scholar
  10. [10]
    Stanković (LJ.). An analysis of some time-frequency and time-scale distributions. Ann. Telecommunic. (1994), 49 (à paraître).Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Ljubiša Stanković
    • 1
  1. 1.Elektrotehnicki fakultetPodgorica, MontenegroYougoslavie

Personalised recommendations