Advertisement

Annales Des Télécommunications

, Volume 47, Issue 1–2, pp 38–48 | Cite as

Integrated horn antennas for millimeter-wave applications

  • Gabriel M. Rebeiz
  • David B. Rutledge
Article
  • 164 Downloads

Abstract

This paper reviews the development of integrated horn antennas since their introduction in 1987. The integrated horn is fabricated by suspending a dipole antenna on a thin dielectric membrane in a pyramidal cavity etched in silicon. Recent progress resulted in optimized low and high-gain designs with single and double-polarizations for remote-sensing and communication applications. A fullwave analysis technique have resulted in an integrated antenna with performance comparable to that of waveguide-fed corrugated horn antennas. The integrated horn design can be easily extended to large arrays for imaging and phased array applications while still leaving plenty of room for the rf and w processing circuitry. Theoretical and experimental results at microwave frequencies and at 90, 240 and 802 GHz will be presented.

Key words

Horn antenna Microwave antenna Millimetric wave Antenna array Plane antenna Orthogonal polarization 

Antennes cornets intéGRées pour applications en ondes millimétriques

Résumé

Etude du développement de telles antennes depuis leur introduction en 1987. Le cornet intégré est fabriqué en suspendant une antenne doublet à une membrane diélectrique mince dans une cavité pyramidale creusée dans du silicium. Des progrès récents ont été réalisés en optimisant les conceptions en gain faible ou en gain élevé avec double ou simple polarisation pour les applications en télécommunication et en télédétection. Le concept de cornet intégré peut aisément être étendu à des réseaux de grande dimension pour imageur ou dispositif à commande de phase, tout en laissant beaucoup de place pour les circuits de traitement du signal en fréquence intermédiaire ou en radiofréquence. Présentation des résultats théoriques et expérimentaux dans le domaine des microondes et aux fréquences de 90, 240 et 802 GHz.

Mots clés

Antenne comet Antenne hyperfréquence Onde millimétrique Antenne réseau Antenne plane Polarisation orthogonale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Phillips (T. G.), Rutledge (D. B.). Superconducting tunnel detectors in radio astronomy.Sci. American (1986),254, pp. 96–102.CrossRefGoogle Scholar
  2. [2]
    Wilson (W. J.), Howard (R. J.), Ibbott (A. C), Parks (G. S.), Ricketts (W. B.). Millimeter-wave imaging sensor.IEEE Trans. MTT (1986),34, pp. 1026–1035.CrossRefGoogle Scholar
  3. [3]
    ***. Special issue on millimeter-wave scattering and propagation.IEEE Trans. GE (May 1988),26.Google Scholar
  4. [4]
    Waters (J. W.). Microwave limb-sounding of Earth’s upper atmosphere.Atmospheric Research (1989),23, pp. 391–410.CrossRefGoogle Scholar
  5. [5]
    Tahim (R. S.), Hayashibara (G. M.), Chang (K.). Design and performance of W-band broad-band integrated circuit mixers.IEEE Trans. MTT (1983),31, pp. 277–283.CrossRefGoogle Scholar
  6. [6]
    Rutledge (D. B.), Muha (M. S.). Imaging antenna arrays.IEEE Trans. AP (July 1982),30, pp. 535–540.Google Scholar
  7. [7]
    Rutledge (D. B.), Neikirk (D. P.), Kasrjngam (D. P.). Integrated circuit antennas.In: Infrared and Millimeter-Waves (1983),10, pp. 1–90, K. J. Button, Ed., New York,Academic Press. Google Scholar
  8. [8]
    Yngvesson (K. S.), Shaubert (D. H.), Korzieniowski (T. L.), Kollberg (E. L.), Thungren (T.), Johansson (J. F.). Endfire tapered slot antennas on dielectric substrates.IEEE Trans. AP (Dec. 1985),33, pp. 1392–1400.Google Scholar
  9. [9]
    Wentworth (S. M.), Rogers (R. L.), Heston (J. G.), Neikirk (D. P.), Itoh (T.). Millimeter-wave twin slot antennas on layered substrates.Intl. Journal of Infrared and Millimeter-Waves (1990),11, pp. 111–131.CrossRefGoogle Scholar
  10. [10]
    Rebeiz (G. M.), Kasilingam (D. P.), Stimson (P. A.), Guo (Y.), Rutledge (D. B.). Monolithic millimeter-wave two-dimensional horn imaging arrays.IEEE Trans. AP (Sep. 1990),28, pp. 1473–1482.Google Scholar
  11. [11]
    Rebeiz (G. M.), Rutledge (D. B.). Millimeter-wave and submillimeter-wave antenna structure.U.S. Patent, 4888, 597.Google Scholar
  12. [12]
    Eleftheriades (G. V.), Ali-Ahmad (W. Y), Katehi (L. P.), Rebeiz (G. M.). Millimeter-wave integrated-horn antennas. Part. I : Theory.IEEE Trans. AP (Nov. 1991),29.Google Scholar
  13. [13]
    Ali-Ahmad (W. Y), Eleftheriades (G. V.), Katehi (L. P.), Rebeiz (G. M.). Millimeter-wave integrated-horn antennas. Part II : Experiment.IEEE Trans. AP (Nov. 1991),29.Google Scholar
  14. [14]
    Peterson (K. E.). Silicon as a mechanical material.Proc. IEEE (1982),70, pp. 420–457.CrossRefGoogle Scholar
  15. [15]
    Williams (R. E.). Gallium arsenide processing techniques.Artech House (1984).Google Scholar
  16. [16]
    Guo (Y), Lee (K.), Stimson (P. A.), Potter (K. A.), Rutledge (D. B.). Aperture efficiency of integrated-circuit horn antennas.Microwave and Optical Tech. Lett. (Jan. 1991),4, pp. 6–9.CrossRefGoogle Scholar
  17. [17]
    Ali-Ahmad (W. Y), Rebeiz (G. M.), Davee (H.), Chin (G.). 802 GHz integrated horn antennas imaging array.Intl. J. Infrared Millimeter Waves (May 1991),12, pp. 481–486.CrossRefGoogle Scholar
  18. [18]
    Ali-Ahmad (W. Y), Rebeiz (G. M.). 92 GHz dual-polarized integrated horn antennasIEEE Trans. AP (July 1991),39, pp. 820–825.Google Scholar
  19. [19]
    Ling (C. C), Rebeiz (G. M.). 94 GHz integrated horn monopulse antennas.IEEE AP-S Symp. Digest (June 24–27, 1991), Ontario, Canada, pp. 987–990. Also, submitted for publication in theIEEE Trans. AP (Aug. 1991).Google Scholar
  20. [20]
    Eleftheriades (G. V.), Katehi (L. P.), Rebeiz (G. M.). High- gain step-profiled integrated horn antennas.IEEE AP-S Symp. Digest (June 24–27, 1991), Ontario, Canada, pp. 980–983. Also, to appear in the June 1992 issue of theIEEE Trans. MTT. Google Scholar
  21. [21]
    Eleftheriades (G. V.), Rebeiz (G. M.). A high-gain quasi-monolithic horn antenna.Proc. 16th Intl. Conf Infrared Millimeter Waves (Aug. 1991), Lausanne, Switzerland, pp. 505–506.Google Scholar
  22. [22]
    Eleftheriades (G. V.), Ali-Ahmad (W. Y), Rebeiz (G. M.). A 20-dB quasi-integrated horn antenna. Submitted for publication in theIEEE Microwave and Guided Wave Lett. (Oct. 1991).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Gabriel M. Rebeiz
    • 1
  • David B. Rutledge
    • 2
  1. 1.NASA/Center for Space Terahertz Technology, Electrical Engineering and Computer Science DepartmentUniversity of MichiganAnn Arbor
  2. 2.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadena

Personalised recommendations