Advertisement

Annales Des Télécommunications

, Volume 54, Issue 1–2, pp 30–42 | Cite as

Full-wave electromagnetic simulation of millimeter-wave active devices and circuits

  • Samir Hammadi
  • Robert O Grondin
  • Samir El-Ghazaly
  • Stephen Goodnick
Article
  • 198 Downloads

Abstract

This paper discusses the most recent progress in developing effective physics-based models for devices operating at millimeter-wave frequencies. The model is based on coupling dynamic electromagnetic wave solutions with carrier transport models. The potentials of this modeling approach for both device simulation and the global simulation of millimeter-wave circuits are demonstrated. Results comparing the full-wave model developed with conventional electrostatic models are provided through the simulation of different microwave transistors. The ability of the model to detect traveling wave effects, such as phase mismatch between the input and output electrodes of a conventional transistor, and their effects on the device gain are also provided. Results from the simulation of an air-bridged gateMesfet, designed to reduce traveling wave effects in high frequency transistors and solve the problem associated with high gate resistance, are illustrated and discussed. Finally, results showing the ability of this technique to model the nonlinearity and the harmonic distortion are provided through the simulation of an amplifier circuit.

Résumé

Cet article discute des plus récents progrès dans les modèles physiques des dispositifs fonctionnant en ondes millimétriques. Le modèle utilise le couplage entre ondes électromagnétiques et les équations dynamiques des porteurs de charge. On montre les potentialités de ce modèle pour la simulation des circuits en ondes millimétriques. Une comparaison entre cette méthode et la méthode classique de l’électrostatique est réalisée par l’intermédiaire de la simulation de différents transistors microondes. L’aptitude du modèle à détecter des effets d’onde progressive, comme la désadaptation de phase entre l’entrée et la sortie d’un transistor ordinaire, et leurs effets sur le gain sont également fournis. Les résultats de la simulation d’une porteMesfet pontée, conçue pour réduire les effets de propagation et résoudre le problème associé à la forte résistance de porte, sont illustrés et commentés. Enfin, des résultats montrant la capacité du modèle à prendre en compte les non-linéarités ainsi que la distorsion harmonique sont fournis à trovers la simulation d’un circuit amplificateur.

Keywords

Microwave device Millimetric wave Active circuit Physical model Simulation Microwave transistor Electromagnetism Maxwell equation Finite difference method Time domain method Hydrodynamics Transport process Mesfet Microwave amplifier 

Mots clés

Dispositif hyperfréquence Onde millimétrique Circuit actif Modèle physique Simulation Transistor hyperfréquence Électromagnétisme Equation Maxwell Méthode différence finie Méthode domaine temps Hydrodynamique Phénomène transport Transistor effet champ barrière Schottky Amplificateur hyperfréquence 

Simulation électromagnétique toute-onde de dispositifs et circuits microondes

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Horng (T. S.). Extending the three-dimensional spectral-domain approach to hybrid microwave integrated circuits with passive and active lumped elements,IEEE MTT-T Int. Symp Digest, pp. 709–712, (May 1994).Google Scholar
  2. [2]
    Guillouard (K.), Wong (M.-F), Fouad Hanna (V.), Citerne (J.). A new global finite element analysis of microwave circuits including lumped elements,IEEE Trans. Microwave Theory Tech.,44, pp. 2587–2594, (Dec. 1996).CrossRefGoogle Scholar
  3. [3]
    Sui (W.), Christensen (D. A.), Durney (C. H.). A new global finite element analysis of microwave circuits including lumped elements,IEEE Trans. Microwave Theory Tech.,40, pp. 724–730, (Apr. 1992).CrossRefGoogle Scholar
  4. [4]
    Piket-May (M.), Taflove (A.), Baron (J.). FD-TD modeling of digital signal processing propagation in 3-D circuits with passive and active loads,IEEE Trans. Microwave Theory Tech.,42, pp. 1514–1523, (Aug. 1994).CrossRefGoogle Scholar
  5. [5]
    Thomas (V. A.), Jones (M. E.), Piket-May (M.), Taflove (A.), Harrigan (E.). The use of Spice lumped circuits as sub-grid models for FDTD analysis,IEEE Microwave and Guided Wave Lett.,4, pp. 141–143, (May 1994).CrossRefGoogle Scholar
  6. [6]
    Kuo (C.N.), Wu (R.-B.), Houshmand (B.), Itoh (T.). Modeling of microwave active devices using the FDTD analysis based on the voltage-source approach,IEEE Microwave and Guided Wave Lett.,6, pp. 199–201, (May 1996).CrossRefGoogle Scholar
  7. [7]
    Sohel Imtiaz (S. M.), El-Ghazaly (S. M.). Global modeling of millimeter-wave circuits: electromagnetics simulation of amplifiers,IEEE Trans. Microwave Theory Tech.,45, no. 12, pp. 2208–2216, (Dec. 1997).CrossRefGoogle Scholar
  8. [8]
    Alsunaidi (M.A.), Sohel Imtiaz (S. M.), El-Ghazaly (S.M.). Electromagnetic wave effects on microwave transistors using a full-wave high-frequency time-domain model,IEEE Trans. Microwave Theory Tech.,44, no. 6, pp. 799–808, (June 1996).CrossRefGoogle Scholar
  9. [9]
    [9]Sohel Imtiaz (S.M.), El-Ghazaly (S. M.). Performance ofModfet andMesfet: A comparative study including the equivalent circuits using combined electromagnetic and solid-state solver,IEEE Trans. Microwave Theory Tech.,46, no. 7, pp. 923- 931, (July 1998)CrossRefGoogle Scholar
  10. [10]
    Winklestein (D.) et al. Simulation of arbitrary transmission line networks with nonlinear terminations.IEEE Trans. Circuits Syst.,38, pp. 418–422, (Apr. 1991).CrossRefGoogle Scholar
  11. [11]
    Voelker (R. H.), Lomax (R. J.). A finite-difference transmission line matrix method incorporating a nonlinear device model,IEEE Trans. Microwave Theory Tech.,38, pp. 302–312, (Mar. 1990).CrossRefGoogle Scholar
  12. [12]
    Russer (P.), So (P. P. M.),Hoefer (W. J. R.). Modeling of nonlinear active regions in TLM,IEEE Microwave and Guided Wave Lett.,1, pp. 10–13, (Jan. 1991).CrossRefGoogle Scholar
  13. [13]
    Sano (E.) andShibata (T.), Fullwave analysis of picosecond photoconductive switches,IEEE J. Quantum Electron.,26, pp. 372–377, (Feb. 1990).CrossRefGoogle Scholar
  14. [14]
    Tsuei (Y. -S.), Cangellaris (A. C.), Prince (J. L.). Rigorous electromagnetic modeling of chip-to-package (first-level) interconnections,IEEE Trans. Components, Hybrids, and Manufacturing Tech.,16, pp. 876–883, (Dec. 1993).CrossRefGoogle Scholar
  15. [15]
    Hammadi (S.), El-Ghazaly (S.). Simulation of large electromagneticMmics using time-domain impedance concept,1999 IEEE Int. Microwave Symp., Anaheim, CA, (June 1999).Google Scholar
  16. [16]
    El-Ghazaly (S.). Modeling of millimeter-wave devices from consideration of charge transport inAdvances in Computational Electrodynamics: The Finite Difference Time-Domain Method, Artech House, Norwood MA, (1998).Google Scholar
  17. [17]
    El-Ghazaly (S.), Itoh (T.). Traveling-wave inverted-gate field- effect transistors: concept, analysis and potential,IEEE Trans. Microwave Theory Tech.,37, no. 6, pp. 1027–1032, (June 1989).CrossRefGoogle Scholar
  18. [18]
    Jacoboni (C.), Lugli (P.). The monte Carlo method for semiconductor device simulation,Springer-Verlag, Vienna, (1989).Google Scholar
  19. [19]
    —. Monte carlo device simulation: full band and beyond, Edited byK. Hess,Kluwer Academic Publishers, Boston, (1991).Google Scholar
  20. [20]
    Ferry (D. K.), Grondin (R. O.). Physics of submicron devices, (Plenum Press, New York, (1991).Google Scholar
  21. [21]
    Reklaitis (A.). The calculation of electron transient response in semiconductors by the Monte Carlo technique,Phys. Lett.,88A, no. 7, pp. 367–370, (29 March 1982).Google Scholar
  22. [22]
    Lugli (P.) andFerry (D. K.). Dynamical screening of hot carriers in semiconductors from a coupled molecular-dynamics and ensemble Monte Carlo simulation,Phys. Rev. Lett.,56, no. 12, pp. 1295–1297, (24 March 1986).CrossRefGoogle Scholar
  23. [23]
    Kriman (A. M.), Kann (M. J.), Ferry (D. K.), Joshi (R.). Role of exchange interaction in the short time relaxation of a high density electron plasma,Phys. Rev. Lett.,65, no. 13, pp. 1619–1622, (24 Sept. 1990).CrossRefGoogle Scholar
  24. [24]
    Becker (P. C.), Fargnito (H.), Brito-Cruz (C.), Shah (J.), Fork (R. L.), Cunningham (J. E.), Henry (J. E.), Shank (C. V.). Femtosecond photon echoes from band-to-band transitions in GaAs,Phys. Rev. Lett.,61, no. 14, pp. 1647–1649, (3 Oct. 1988).CrossRefGoogle Scholar
  25. [25]
    Joshi (R. P.), Ferry (D. K.). Effect of multi-ion screening on the electronic transport in doped semiconductors: a molecular dynamics analysis,Phys. Rev. B,43, no. 12, pp. 9734–9739, (15 April 1991).CrossRefGoogle Scholar
  26. [26]
    Joshi (R. P.), Kriman (A. M.), Kann (M. J.), Ferry (D. K.). Quantum molecular dynamics treatment for the electron relaxation of high density plasmas in two-dimensional structures,Appl, Phys. Lett.,58, no. 21, pp. 2369–2371, (27 May 1991).CrossRefGoogle Scholar
  27. [27]
    Ferry (D. K.), Kriman (A. M.), Kann (M. J.), Joshi (R. P.). Molecular dynamics extensions of Monte Carlo simulations in semiconductor device models,Comp. Phys.,67, no. 1, pp. 119–134, 1991.MATHGoogle Scholar
  28. [28]
    Ferry (D. K.), Kriman (A. M.), Kann (M. J.), Joshi (R. P.), in Monte Carlo device simulation: Full band and beyond, Ed. byK. Hess,Kluwer Academic Publishers, Boston, (1991).Google Scholar
  29. [29]
    Shawki (T.), Salmer (G.), El-Sayed (O.).Modfet 2-D hydrodynamic energy modeling and optimization of subquarter micron gate structures,IEEE Trans. Electron Devices,37, no. 1, pp. 21–30, (January 1990).CrossRefGoogle Scholar
  30. [30]
    Blotekjaer (K.). Transport equations for electrons in two-valley semiconductors,IEEE Trans. Electron Devices,17, no. 1, pp. 38–47, (January 1970).CrossRefGoogle Scholar
  31. [31]
    Shur (M.). Influence of non-uniform field distribution on frequency limits of GaAs field-effect transistors,Electron Lett.,12, no. 23, pp. 615–616, (November 1976).CrossRefGoogle Scholar
  32. [32]
    Carnez (B.), Cappy (A.), Kaszynski (A.), Constant (E.), Salmer (G.). Modeling of a submicrometer gate field effect transistor including effects of nonstationary electron dynamics,J. Appl. Phys.,51, no. 1, pp. 784–790, (January 1980).CrossRefGoogle Scholar
  33. [33]
    Feng (Y. K.), Hintz (A.). Simulation of submicrometer GaAsMesfets using a full dynamic transport model,IEEE Trans. Electron Devices,35, no. 9, pp. 1419–1431, (September 1988).CrossRefGoogle Scholar
  34. [34]
    Hoffman (K. A.).Computational Fluid Dynamics for Engineers, (1989).Google Scholar
  35. [35]
    Vasileska (D.), Gross (W. J.), Kafedziski (V.), Ferry (D. K.). Convergence properties of the bi-Cgstab method for the solution of the 3D Poisson and 3D electron current continuity equations for scaled SiMosfets,VLSI Design,8, nos. 1–4, pp. 301–305, (1998).CrossRefGoogle Scholar
  36. [36]
    Hockney (R. W.), Eastwood (J. W.). Computer simulation using particlesMcGraw-Hill, New York, (1981).Google Scholar
  37. [37]
    *** The physics of submicron devices, edited byGrubin (H. L.),Ferry (D. K.) andJacoboni (C.),Plenum Press, New York, (1988).Google Scholar
  38. [38]
    ***Vlsi design. Special issue on computational electronics, guest editorPorod (W.),8, nos. 1–4, (1998).Google Scholar
  39. [39]
    Jackson (J. D.). Classical electrodynamics,John Wiley and Sons, New York, (1962).Google Scholar
  40. [40]
    Mahan (G. D.). Many particle physics,Plenum Press, New York, (1981).Google Scholar
  41. [41]
    Tai (C. T.). Dyadic Green’s functions in electromagnetic theory,Intext Publishing, Scanton PA, (1971).Google Scholar
  42. [42]
    Yee (K. S.). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,IEEE Trans. Antennas Prop,14, no. 3, pp. 302–307, (May 1966).CrossRefGoogle Scholar
  43. [43]
    Taflove (A.), Browdin (M.). Numerical solution of steady-state electromagnetic scattering problems using the time dependent Maxwell’s equations,IEEE Trans. Microwave Theory Tech.,23, no. 8, pp. 623–630, (August 1975).CrossRefGoogle Scholar
  44. [44]
    Railton (C. J.), Daniel (E. M.), Paul (D.), McGeehan (J. P.). Optimized absorbing boundary conditions for the analysis of planar circuits using the finite difference time domain method,IEEE Trans. Microwave Theory Tech.,41, no. 2, pp. 290–297, (February 1993).CrossRefGoogle Scholar
  45. [45]
    Railton (C. J.), Daniel (E. M.). A comparison of the properties of radiating boundary conditions in theFdtd method for finite discretization and non-planar waves,IEEE Trans. Antennas Prop.,42, no. 2, pp. 276–281, (February 1994).CrossRefGoogle Scholar
  46. [46]
    Higdon (R. L.). Numerical absorbing boundary conditions for the wave equation.Math. Comp,49, pp. 65–91, (July 1987).MATHCrossRefMathSciNetGoogle Scholar
  47. [47]
    Balanis (C. A.). Advanced engineering electromagnetics,Wiley, New York, (1989).Google Scholar
  48. [48]
    Berenger (J. P.). A perfectly matched layer for the absorption of electromagnetic waves.J. Computational Physics,114, no. 2, pp. 185–200, (October 1994).MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    Berenger (J. P.). Perfectly matched layer for theFdtd solution of wave-structure interaction problems,IEEE Trans. Antennas Prop.,44, no. 1, pp. 110–117, (January 1996).CrossRefGoogle Scholar
  50. [50]
    Berenger (J. P.). Three dimensional perfectly matched layer for the absorption of electromagnetic waves,J. Computational Physics,127, no. 2, pp. 363–379, (September 1996).MATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    Reiser (M.). A two dimensional numericalFet model for theDc, Ac and large signal analysis,IEEE Trans. Electron Devices,20, no. 1, pp. 35–45, (January 1973).CrossRefGoogle Scholar
  52. [52]
    Hakim (M. S.), El-Ghazaly (S.). Analysis of wave propagation effects on microwave field effect transistors,Proc. of 1993 IEEE MTT-s Int. Microwave Symp., Atlanta, GA,3, pp. 1303–1306, (June 1993).Google Scholar
  53. [53]
    Megahed (M.), El-Ghazaly (S.). Discontinuity effects on high frequency transistors,Proc. of the 1997, IEEE MTT-s Int. Microwave Symp., Denver, CO, pp. 609–612, (June 1997).Google Scholar
  54. [54]
    Hammadi (S. M.), El-Ghazaly (S.). ExtendingFdtd/convolution techniques to 3-D microwave structures,IEEE Antennas and Propagation Society International Symposium 1997, Montreal, Canada, pp. 2180–2183, (July 1997).Google Scholar
  55. [55]
    Hammadi (S. M.), El-Ghazaly (S.). Simulation of large electromagnetic structures with an application to quasi-optical amplifier,proc. of the 1997 European Microwave Conf., Jerusalem, Israel,2, pp. 870–876, (Sept. 1997).Google Scholar
  56. [56]
    Alsunaidi (M. A.), Hammadi (S. M.), El-Ghazaly (S. M.). Parallel implementation of a two-dimensional hydrodynamic model for microwave semiconductor devices including inertia effects in momentum relaxation,International Journal of Numerical Modeling: Electronic Networks. Devices, and Fields,10, pp. 107–119, (1997).CrossRefGoogle Scholar
  57. [57]
    Lim (I.-S.). Ph. D, dissertation, Department of Electrical Engineering, Arizona State University.Google Scholar
  58. [58]
    El-Ghazaly (S.), Joshi (R.), Grondin (R.). Electromagnetic and transport considerations in subpicosecond photoconductive switch modelling,IEEE Trans. Microwave Theory and Techniques,38, no. 5, pp. 629–637, (1990).CrossRefGoogle Scholar
  59. [59]
    Lim (I.-S.), Grondin (R. O.), El-Ghazaly (S.). Ensemble Monte Carlo and full-wave electrodynamic models implemented self- consistently on a parallel processor using perfectly matched layer boundary conditions, VLSI design,8, nos. 1–4, pp. 129–133, (1998).CrossRefGoogle Scholar
  60. [60]
    Remley (K. A.), Weishaar (A.), Tripathi (V. K.), Goodnick (S. M.). Modeling of radiation fields in a sub-picosecond photoconducting system, VLSI design,8, nos. 1–4, pp. 407–412, (1998).CrossRefGoogle Scholar
  61. [61]
    Valdmanis (J.), Mourou (G.). Subpicosecond electrooptic sampling: principles and applications,IEEE J. Quantum Electronics.22, no. 1, pp. 69–78, (January 1986).CrossRefGoogle Scholar
  62. [62]
    Sha (W.), Rhee (J. K.), Norris (T. B.), Schaff (W. J.). Transient carrier and field dynamics in quantum well parallel transport: from the ballistic to the quasi-equilibrium regime,IEEE J Quantum Electronics,28, no. 10, pp. 2445–2455, (October 1992).CrossRefGoogle Scholar
  63. [63]
    Ruch (J.). Electron dynamics in short channel field-effect transistors,IEEE Trans. Electron Devices,19, no. 5, pp. 652–654, (May 1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Samir Hammadi
    • 1
  • Robert O Grondin
    • 1
  • Samir El-Ghazaly
    • 1
  • Stephen Goodnick
    • 1
  1. 1.Department of Electrical EngineeringArizona State UniversityUSA

Personalised recommendations