Advertisement

Annales Des Télécommunications

, Volume 54, Issue 3–4, pp 173–182 | Cite as

New results on serial concatenated and accumulated-convolutional turbo code performance

  • Audrey M. Viterbi
  • Andrew J. Viterbi
Article
  • 93 Downloads

Abstract

Previous methods for analyzing serial concatenated turbo codes employing union error bounds are extended to determine the complete output weight enumeration function of the code; this provides the opportunity to employ a more refined bound due to Polytrev, with considerably improved results limited, however, to block lengths of about 256 bits by computational constraints. The method is then applied to a new class of “accumulated-convolutional” codes, which is a simple special subclass of serial concatenated codes inspired by the “repeat-accumulate” codes of Divsalar et al. Performance appears to be superior to that of conventional codes and results are obtained for much longer block lengths, with impressive results in regions approaching channel capacity.

Key words

Error correcting code Turbo code Error probability Convolutional code 

Nouveaux résultats sur les performances des turbo codes séries construits à partir de codes convolutifs avec accumulation

Résumé

Des méthodes usuelles employant la borne de l’union pour analyser les turbo codes concaténés en série sont étendues pour déterminer la fonction compléte d’énumération de poids en sortie d’un code; on peut utiliser une borne plus fine proposée par Polytrev, borne qui amé-liore considérablement les résultats. Cette borne est cependant limitée, pour des raisons de complexité de calcul à des blocs de longueur de l’ordre de 256. La méthode est ici appliquée à une nouvelle classe de codes « convolutifs accumulés », qui est une simple classe particulière de codes concaténés en série, inspirés des codes à « répétition-accumulation » de Divsalar et al. Les performances obtenues sont supérieures à celles des codes classiques et les résultats, qui sont obtenus pour des blocs bien plus longs, sont impressionnants dans la région approchant la capacité du canal.

Mots clés

Code correcteur erreur Turbo code Probabilité erreur Code convolutif 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berrou (C.), Glavieux (A.), Thitimajshima (P.). Near Shannon limit error correcting coding and decoding: turbo codes, Proc. of International Conference on Communications, pp. 1064–1070, Geneva, Switzerland, (May 23–26, 1993).Google Scholar
  2. [2]
    Benedetto (S.), Montorsi (G.), Unveiling turbo codes: some results on parallel concatenated coding schemes,IEEE Trans. Information Theory,42, no 2, pp. 409–428, (March 1996).MATHCrossRefGoogle Scholar
  3. [3]
    Benedetto (S.), Montorsi (G.), Divsalar (D.), Pollara (F.), Serial concatenation of interleaved codes: performance analysis, design and iterative decoding,JPL TDA Progress Report 42–126, (August 15, 1996).Google Scholar
  4. [4]
    Viterbi (A. J.), Viterbi (A. M.), Sindhushayana (N. T.). Interleaved concatenated codes: new perspectives on approaching the Shannon limit,Proc. Natl. Acad. Sci,94, pp. 9525–9531, (September, 1997).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Divsalar (D.), Jin (H.), McEliece (R.), Coding theorems for turbo-like codes,Jet Propulsion Laboratory, Pasadena, CA, (September 1998). See also D. Divsalar and F. Pollara, Serial and hybrid concatenated codes with applications,Proceedings of the International Symposium on Turbo Codes and Related Topics, Brest. Fr. (September, 1997).Google Scholar
  6. [6]
    Viterbi (A. J.), Omura (J. K.), Principles of digital communication and coding,McGraw-Hill, NY, 1979MATHGoogle Scholar
  7. [7]
    Duman (T. M), Salehi (M.), New performance bounds for turbo codes,Proc. of 1997 Global Communications Conference (Globe- com’97), pp. 634–638, USA, Phoenix, Arizona, (November 4–8, 1997).Google Scholar
  8. [8]
    Viterbi (A. M.), Viterbi (A. J.), Improved union bound on linear codes for the input-binaryAwgn channel with applications to turbo-codes,Proc. 1998 IEEE Intl. Symp. On Information Theory, MIT, Cambridge, MA, (August, 1998).Google Scholar
  9. [9]
    Sason (I.), Shamai (Shitz) (S.), Improved upper bounds on the decoding error probability of parallel and serial concatenated turbo codes via their ensemble distance spectrum,Technion, Haifa, Israel, (February, 1998).Google Scholar
  10. [10]
    Poltyrev (G.), Bounds on the decoding error probablity of binary linear codes via their spectra,IEEE Trans.IT. 40, no 10, pp. 1261–1271, (October, 1996).Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Audrey M. Viterbi
    • 1
  • Andrew J. Viterbi
    • 1
  1. 1.Qualcomm IncorporatedSan DiegoUsa

Personalised recommendations