Advertisement

Annales des Télécommunications

, Volume 41, Issue 1–2, pp 50–58 | Cite as

Sur l’élaboration par jets moléculaires et les propriétés optiques d’hétérojonctions Ga Al Sb/Ga Sb

  • Claude Raisin
  • Babakor Saguintaah
  • Hassan Tegmousse
  • Louis Lassabatere
  • Bernard Girault
  • Claude Alibert
Physique et Technologies de la Communication (Télémat 85) Matériaux et Phénomènes Physiques de Base
  • 103 Downloads

Molecular beam epitaxy and optical properties of GaAlSb/GaSb heterojunctions

Analyse

Le travail présenté ici porte sur l’élaboration de couches de GaSb et GaAISb par la méthode d’épitaxie par jets moléculaires. Cette méthode décrit brièvement la technique expérimentale et indique les caractéristiques de la croissance des couches. Les résultats des analyses par diffraction des électrons au cours de la formation des interfaces GaSb-GaSb, GaSb-GaAs, GaAISb-GaSb et GaAISb-GaAs sont donnés, ainsi que les propriétés électriques et optiques essentielles des couches obtenues par effet Hall et électroréflexion. Les principales transitions interbandes directes du GaSb et GaAlSb sont précisées en particulier.

Abstract

In this paper the authors present the molecular beam epitaxy preparation of GaSb and GaAlSb layers. They describe briefly the experimental technique and report on the growth characterization of the layers. They have used reflection high-energy electron diffraction (rheed)to study the epitaxial growth of GaSb and GaAlSb. The evolution of therheedpattern was then followed,for given growth conditions, during the formation of GaSb-GaSb, GaSb-GaAs, GaAISb-GaSb and GaAlSb-GaAs interfaces. By electroreflectance study energy positions of the main direct interband transitions for GaSb and GaAISb are obtained.

Mots clés

Fabrication microélectronique Epitaxie Faisceau moléculaire Hétérojonction Propriété optique Dispositif semiconducteur Composé III–V Aluminium gallium antimoniure Gallium antimoniure Caractérisation Etude expérimentale 

Key words

Microelectronic manufacturing Epitaxy Molecular beam Heterojunction Optical properties Semiconductor device III–V compound Aluminium gallium antimonide Gallium antimonide Characterization Experimental study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    Botez (D.).Heitskowitz (G. J.). Components for optical communications systems: a review.Proc. IEEE, USA (1980),68, p. 731.CrossRefGoogle Scholar
  2. [2]
    Osani (H.),Shioda (T.),Moriyama (T.),Araki (S.),Horiguchi (M.),Izawa (T.),Takata (H.). Effects of dopants on transmission loss of low — OH — content optical fibers.Electron. Lett., UK (1976),12, p. 549.CrossRefGoogle Scholar
  3. [3]
    Law (H. D.),Chin (R.),Nakano (K.),Milano (R. A.). The GaAlAsSb quaternary and GaAlSb ternary alloys and their applications to infrared detectors.IEEE, Trans. QE, USA (1981),17, p. 275.CrossRefGoogle Scholar
  4. [4]
    Mozer (A.),Romanek (K. M.),Hildebrand (O.),Schmid (W.),Pilkuin (M. H.). Losses in GalnAsP/InP and GaAlSbAs/GaSb lasers. The influence of the split-off valence band.IEEE, Trans. QE, USA (1983),19, p. 913.CrossRefGoogle Scholar
  5. [5]
    Takeshima (M.). Theoretical study of long-wavelength laser operation in Ga1−xAlxAsySb1−y,J. appl. Phys., USA (1984),56, p. 2502.CrossRefGoogle Scholar
  6. [6]
    Tsang (W. T.),Olson (N. A.). Preparation of 1.78 μm wavelength Al0,2Ga0,8 Sb/GaSb double heterostructure lasers by molecular beam epitaxy.Appl. phys. Lett., USA (1983), 43, p. 8.CrossRefGoogle Scholar
  7. [7]
    Chang (L. L.). A review of recent advances in semiconductor superlattices.J. Vac. Sci. Technol., B1, USA (1983),120.Google Scholar
  8. [8]
    Voisin (P.),Delalande (C.),Voos (M.),Chang (L. L.),Segmuller (A.),Chang (C. A.),Esaki (L.). Light and heavy valence subband reversal in GaSb-AlSb superlattices.Phys. Rev. USA (1984), B 30, p. 2276.Google Scholar
  9. [9]
    Hirayama (Y.),Ohmori (Y.),Okamoto (H.). AlSb-GaSb and AlAs-GaAs monolayer superlattices grown by molecular beam epitaxy.J. appl. Phys., USA (1984),23, p. 488.CrossRefGoogle Scholar
  10. [10]
    Arthur (J. R.),Le Pore (J. J.). GaAs, GaP and GaAsP. Epitaxial films growth by molecular beam deposition.J. Vac. Sei. Technol., USA (1969),6, p. 545.CrossRefGoogle Scholar
  11. [11]
    Cho (A. Y.). Morphology of epitaxial growth of GaAs by a molecular beam method: the observation of surface structures.J. appl. Phys., USA (1970),41, p. 2780.CrossRefGoogle Scholar
  12. [12]
    Molecular Beam Epitaxy, Ed.B. R. Pamplin, Pergamon Press (1979).Google Scholar
  13. [13]
    Massies (J.),Etienne (P.),Dezaly (F.),Linh (N. T.). Stoichiometry effects on surface properties of GaAs [100] grownin situ byMbe.Surface Science, USA (1980),99, p. 121.CrossRefGoogle Scholar
  14. [14]
    Chiu (T. H.),Tsang (W. T.). Reflection high-energy electron diffraction studies on the molecular beam epitaxial growth of AlSb, GaSb, InAs, InAsSb and GalnAsSb on GaSb.J. appl. Phys., USA (1985),57, p. 4572.CrossRefGoogle Scholar
  15. [15]
    Chang (C. A.),Ludeke (R.),Chang (L. L.),Esaki (E.). Molecular beam epitaxy of InGaAs and GaSbAs.Appl. Phys. Lett., USA (1977),31, p. 759.CrossRefGoogle Scholar
  16. [16]
    Gotoh (H.),Sasamoto (K.),Kuroda (S.),Kimata (M.). Molecular beam epitaxy of AlSb on GaAs and GaSb on AlSb films.Phys. Stat. Sol. (a), USA (1983),75, p. 641.CrossRefGoogle Scholar
  17. [17]
    Ludeke (R.). Electronic properties of (100) surfaces of GaSb and InAs and their alloys with GaAs.IBM, J. Res. Develop., USA (1978),22, p. 304.Google Scholar
  18. [18]
    Van der Meulen (Y. J.). Growth properties of GaSb: the structure of the residual acceptor centres.J. Phys. Chem. Solids, USA (1967),28, p. 25.CrossRefGoogle Scholar
  19. [19]
    Kerr (T. M.),McLean (T. D.),Westwood (D. I.),Grange (J. D.). The growth and doping of GaAsSb by molecular beam epitaxy.J. Vac. Sci. Technol., USA (1985), B3, p. 535.CrossRefGoogle Scholar
  20. [20]
    Alibert (C.),Fan Jia Hua, Erman (M.),Frijlink (P.),Jarry (P.),Theeten (J. B.). Electroréflexion et ellipsométrie spectroscopique d’hétérostructures InGaAsP/InP et GaAl-As/GaAs.Rev. Phys. Appl. (1983),18, p. 709.Google Scholar
  21. [21]
    Jouillie (A.),Zein Eddin (A.),Girault (B.). Temperature dépendance of the L6c → ⊥6c energy gap in GaSb.Phys. Rev., USA (1981), B 23, p. 928.Google Scholar
  22. [22]
    Alibert (C.),Joullie (A.),Joullie (M.),Ance (C.). Modulation spectroscopy study of the GaAlSb band structure.Phys. Rev., USA (1983), B 27, p. 4946.Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 1986

Authors and Affiliations

  • Claude Raisin
    • 1
  • Babakor Saguintaah
    • 1
  • Hassan Tegmousse
    • 1
  • Louis Lassabatere
    • 1
  • Bernard Girault
    • 2
  • Claude Alibert
    • 2
  1. 1.Laboratoire d’Etudes des Surfaces, Interfaces et ComposantsU.A. CNRS04-0787, USTLMontpellier
  2. 2.Equipe de Microoptoélectronique de MontpellierU.A. CNRS 04-392 USTLMontpellier

Personalised recommendations